A.\(\frac{{17\sqrt {13} }}{{65}}.\)
B.\(\frac{{6\sqrt {85} }}{{85}}.\)
C.\(\frac{{6\sqrt {13} }}{{65}}.\)
D. \(\frac{{7\sqrt {85} }}{{85}}.\)
D
Gọi \(F,P,Q\) lần lượt là trung điểm \(AB,C'D',BD\)
Do \(\left. \begin{array}{l}C'D' \bot IP\\C'D' \bot OI\end{array} \right\} \Rightarrow CD' \bot \left( {FMP} \right),\left( {FMP} \right) \equiv \left( {OIP} \right)\)
Kẻ \(NM//C'D'(N \in AA'D'D) \Rightarrow NM \bot \left( {FMP} \right) \Rightarrow \left\{ \begin{array}{l}NM \bot MP\\NM \bot MF\end{array} \right.\)
Do đó góc tạo bởi mặt phẳng \(\left( {MC'D'} \right)\) và \(\left( {MAB} \right)\) bằng góc \({180^0} - \widehat {FMP}\)
Đặt độ dài cạnh của hình lập phương ABCD.A’B’C’D’ là a.
Ta có: \(MI = \frac{a}{6},IP = \frac{a}{2},FP = AD' = a\sqrt 2 .\)
Áp dụng pitago cho tam giác vuông \(MIP:MP = \sqrt {M{I^2} + P{I^2}} = \frac{{a\sqrt {10} }}{6}\)
Ta có: \(MQ = \frac{{5a}}{6},QF = \frac{a}{2}\), áp dụng pitago cho tam giác vuông
\(MQF:MF = \sqrt {M{Q^2} + Q{F^2}} = \frac{{a\sqrt {34} }}{6}\)
Áp dụng định lí hàm số côsin cho tam giác \(MFP\)
\(\cos \widehat {FMP} = \frac{{M{F^2} + M{P^2} - F{P^2}}}{{2MF.MP}} = - \frac{{7\sqrt {85} }}{{85}}\)
Vậy côsin góc tạo bởi hai mặt phẳng \(\left( {MC'D'} \right)\) và \(\left( {MAB} \right)\) bằng \(\frac{{7\sqrt {85} }}{{85}}.\)
Đáp án D
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247