A. \( - 4.\)
B.\(\frac{{7 - \sqrt 7 }}{7}.\)
C. \( - 2.\)
A
Phương trình hoành độ giao điểm của đường thẳng \(y = m\) và đồ thị hàm số \(y = {x^3} - 3{x^2}\) là \({x^3} - 3{x^2} - m = 0\left( * \right).\)
Gọi \({x_1},{x_2},{x_3}\left( {{x_1} < {x_2} < {x_3}} \right)\) lần lượt là 3 nghiệm của (*), theo giả thiết ta giả sử \(A\left( {{x_1};{y_1}} \right),B\left( {{x_2};{y_2}} \right),C\left( {{x_3};{y_3}} \right)\) khi đó
\(AB = 2BC \Leftrightarrow \left| {{x_2} - {x_1}} \right| = 2\left| {{x_3} - {x_2}} \right|\)
\( \Leftrightarrow {x_2} - {x_1} = 2\left( {{x_3} - {x_2}} \right)\)
\( \Leftrightarrow {x_1} + {x_2} + {x_3} = 4{x_2} - {x_3} \Leftrightarrow {x_3} = 4{x_2} - 3\) (theo ĐL Vi-et cho PT(*) có \({x_1} + {x_2} + {x_3} = 3).\)
Thay nghiệm \({x_3} = 4{x_2} - 3\) vào (*) ta có phương trình \({\left( {4{x_2} - 3} \right)^3} - 3{\left( {4{x_2} - 3} \right)^2} = m\)
Lại có \({x_2}\) cũng là nghiệm của \(\left( * \right)\) nên \(x_2^3 - 3x_2^2 = m\) do đó ta có phương trình
\({\left( {4{x_2} - 3} \right)^3} - 3{\left( {4{x_2} - 3} \right)^2} = x_2^3 - 3x_2^2\)
\( \Leftrightarrow 64x_2^3 - 144x_2^2 + 108x_2^{} - 27 - 3\left( {16x_2^2 - 24{x_2} + 9} \right) = x_2^3 - 3x_2^2\)
\( \Leftrightarrow 63x_2^3 - 189x_2^3 + 180{x_2} - 54 = 0\)
\( \Leftrightarrow 7x_2^3 - 21x_2^3 + 20{x_2} - 6 = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}{x_2} = \frac{{7 + \sqrt 7 }}{7}\\{x_2} = 1\\{x_2} = \frac{{7 - \sqrt 7 }}{7}\end{array} \right.\)
Với \({x_2} = 1\) suy ra \({x_3} = 1\) (loại).
Với \({x_2} = \frac{{7 \pm \sqrt 7 }}{7} \Rightarrow m = - \frac{{48 \pm 20\sqrt 7 }}{{49}}.\)
Thử lại trực tiếp ta thấy \(m = - \frac{{98 + 20\sqrt 7 }}{{49}}\) và \(m = - \frac{{98 - 20\sqrt 7 }}{{49}}\) là thỏa mãn được yêu cầu bài toán.
Vậy \(S = \left\{ { - \frac{{98 - 20\sqrt 7 }}{{49}}; - \frac{{98 + 20\sqrt 7 }}{{49}}} \right\}\) và tổng các phần tử thuộc tập \(S\) là \( - 4.\)
Đáp án A
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247