Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y= x^2+2x+m-4 trên đoạn (2;1) đạt giá trị nhỏ nhất. Giá trị của m là

Câu hỏi :

Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y=x2+2x+m4 trên đoạn 2;1 đạt giá trị nhỏ nhất. Giá trị của m là 

A. 5

B. 4

C. 1

D. 3

* Đáp án

* Hướng dẫn giải

Xét hàm số fx=x2+2x+m4 trên đoạn 2;1. Ta có f'x=2x+2=0x=1.

Ta có f2=m4,f1=m1 và f1=m5.

Giá trị lớn nhất của hàm số đã cho là maxm4,m1,m5.

Ta thấy m5<m4<m1 nên m4<maxm1,m5. Do đó

maxm4,m1,m5=maxm1,m5.

Đặt A=m1=m3+2 và m=m5=m32.

      *m3>0maxA,BA>2.

      * m3<0maxA,BB>2.

      * m3=0maxA,B=A=B=2.

Vậy để giá trị lớn nhất của hàm số đạt giá trị nhỏ nhất thì m=3.

Chọn đáp án D.

Copyright © 2021 HOCTAP247