Giả sử s = ( a, b ) là tập nghiệm của bất phương trình Khi đó bằng

Câu hỏi :

Giả sử S=a;b là tập nghiệm của bất phương trình 5x+6x2+x3x4log2x>x2xlog2x+5+56+xx2. Khi đó ba bằng

A. 12

B. 2

C. 72

D. 52

* Đáp án

* Hướng dẫn giải

Điều kiện x>06+xx2>0x>02x3.

Ta có

                          5x+6x2+x3x4log2x>x2xlog2x+5+56+xx2

                        5x+x6+xx2log2x>xx1log2x+5+56+xx2

                        x15xlog2x+6+xx2xlog2x5>0

                        5xlog2xx16+xx2>0

                        5xlog2x>0x16+xx2>05xlog2x<0x16+xx2<0

* Xét hệ I5xlog2x>0                1x16+xx2>0     2

Giải 1

Xét hàm số fx=x5xlog2x=xgx với x0;3.

Ta có g'x=5x21xln2<0,x0;3.

Lập bảng biến thiên:

Câu 47: Giả sử s = ( a, b )  là tập nghiệm của bất phương trình  Khi đó  bằng (ảnh 1)

Vậy fx=x5xlog2x>0,x0;3.

Xét bất phương trình 2:

                                    26+xx2<x1

                                    6+xx2<x12x>1

                                    x23x5>0x>1

                                    x<1x>52x>1

                                    x>52.

Vậy nghiệm của hệ I là D=52;3.

* Hệ 5xlog2x<0x16+xx2<0 vô nghiệm.

Vậy S=52;3, suy ra ba=352=12.

Chọn đáp án A.

Copyright © 2021 HOCTAP247