Anh Minh muốn xây dựng một hố ga không có nắp đậy dạng hình hộp chữ nhật có thể tích chứa được 3200 cm^3

Câu hỏi :

Anh Minh muốn xây dựng một hố ga không có nắp đậy dạng hình hộp chữ nhật có thể tích chứa được \(3200c{m^3}\), tỉ số giữa chiều cao và chiều rộng của hố ga bằng 2 . Xác định diện tích đáy của hố ga để khi xây hố tiết kiệm được nguyên vật liệu nhất.

A.\(170c{m^2}\).

B.\(160c{m^2}\).

C.\(150c{m^2}\).

D.\(140c{m^2}\).

* Đáp án

B

* Hướng dẫn giải

Gọi chiều rộng của hố ga là \(x\left( {cm} \right)\left( {x >0} \right) \Rightarrow \) chiều cao của hố ga là \(2x\left( {cm} \right)\)

Hố ga dạng hình hộp chữ nhật có thể tích là \(3200c{m^3} \Rightarrow \) Chiều dài hố ga là \(\frac{{3200}}{{x.2x}} = \frac{{1600}}{{{x^2}}}\left( {cm} \right)\)

Tổng diện tích cần xây hố ga (5 mặt, trừ mặt đáy trên) là:

\(S = 2.\left( {x + \frac{{1600}}{{{x^2}}}} \right).2x + x.\frac{{1600}}{{{x^2}}} = 4{x^2} + \frac{{8000}}{x}\left( {c{m^2}} \right)\)

Theo bất đẳng thức AM-GM, ta có: \(S = 4{x^2} + \frac{{4000}}{x} + \frac{{4000}}{x} \ge 3\sqrt[3]{{4{x^2}.\frac{{4000}}{x}.\frac{{400}}{x}}} = 1200\)

Dấu “=” xảy ra khi và chỉ khi \(4{x^2} = \frac{{4000}}{x} \Leftrightarrow {x^3} = 1000 \Leftrightarrow x = 10\) (thỏa mãn)

Với \(x = 10\) thì diện tích mặt đáy của hố ga là \(10.\frac{{1600}}{{{{10}^2}}} = 160\left( {c{m^2}} \right).\)

Đáp án B

Copyright © 2021 HOCTAP247