Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Số đo góc giữa BA'C và DA'C

Câu hỏi :

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a.\) Số đo góc giữa \(\left( {BA'C} \right)\) và \(\left( {DA'C} \right).\)

A.\({45^0}\).

B.\({90^0}\).

C.\({60^0}\).

D.\({30^0}\).

* Đáp án

C

* Hướng dẫn giải

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a.\) Số đo góc giữa \(\left( {BA'C} \right)\) và \(\left( {DA'C} \right).\) (ảnh 1)

Gọi H,K lần lượt là trung điểm của \[A'B,A'D\]

Ta có: \[AH \bot (BA'C),AK \bot (DA'C)\]

\[ = >(\widehat {(BA'C);(DA'C)}) = \widehat {(AH,AK)} = \widehat {HAK}\]

Lại có : HK là đường trung bình của \[\Delta A'BD = >HK = \frac{1}{2}BD = \frac{{a\sqrt 2 }}{2}\]

Mặt khác \[AH = AK = \frac{{a\sqrt 2 }}{2} = >AH = AK = HK = a\sqrt 2 \]

=>\[\Delta AHK\]đều.

\[ = >(\widehat {(BA'C);(DA'C)}) = \widehat {HAK} = {60^o}.\]

Đáp án C

Copyright © 2021 HOCTAP247