A.\({45^0}\).
B.\({90^0}\).
C.\({60^0}\).
D.\({30^0}\).
C
Gọi H,K lần lượt là trung điểm của \[A'B,A'D\]
Ta có: \[AH \bot (BA'C),AK \bot (DA'C)\]
\[ = >(\widehat {(BA'C);(DA'C)}) = \widehat {(AH,AK)} = \widehat {HAK}\]
Lại có : HK là đường trung bình của \[\Delta A'BD = >HK = \frac{1}{2}BD = \frac{{a\sqrt 2 }}{2}\]
Mặt khác \[AH = AK = \frac{{a\sqrt 2 }}{2} = >AH = AK = HK = a\sqrt 2 \]
=>\[\Delta AHK\]đều.
\[ = >(\widehat {(BA'C);(DA'C)}) = \widehat {HAK} = {60^o}.\]
Đáp án C
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247