A.\(\frac{{{a^2}b}}{8}\).
B.\(\frac{{a{b^2}}}{8}\).
C.\(\frac{{4{a^2}b}}{{27}}\).
D.\(\frac{{4a{b^2}}}{{27}}\).
C
Gọi giao điểm của BM với AD là J, giao điểm của AM với BC là I
Gọi độ dài MN là x, độ dài MP là y.
Ta có:
\[\left\{ \begin{array}{l}\frac{{MN}}{{SA}} = \frac{{IM}}{{IA}}\\\frac{{MP}}{{SB}} = \frac{{JM}}{{JB}} = \frac{{AM}}{{AI}}\end{array} \right. = >\frac{x}{a} + \frac{y}{b} = 1\]
\[ = >P = (\frac{x}{{2a}}.\frac{x}{{2a}}.\frac{y}{b}).\frac{{4{a^2}}}{b} \le \frac{{{{(\frac{x}{{2a}} + \frac{y}{{2a}} + \frac{y}{b})}^3}}}{{{3^3}}}\frac{{4{a^2}}}{b} = \frac{1}{{27}}.\frac{{4{a^2}}}{b} = \frac{{4{a^2}b}}{{27}}\](BĐT Cauchy)
Đáp án C
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247