A. \(\frac{{52}}{6}\).
B. \( - \frac{{101}}{6}\).
C. \(\frac{{43}}{6}\).
D. \( - \frac{{29}}{6}\).
Ta có: \(f\prime (x) = \frac{{{x^2}\left( {x + 1} \right) - 1}}{{{x^2} + x + \sqrt {x + 1} }} = \frac{{{{\left( {x\sqrt {x + 1} } \right)}^2} - 1}}{{x\left( {x + 1} \right) + \sqrt {x + 1} }}\)
\( = \frac{{{{\left( {x\sqrt {x + 1} } \right)}^2} - 1}}{{\sqrt {x + 1} \left( {x\sqrt {x + 1} + 1} \right)}} = \frac{{\left( {x\sqrt {x + 1} + 1} \right)\left( {x\sqrt {x + 1} - 1} \right)}}{{\sqrt {x + 1} \left( {x\sqrt {x + 1} + 1} \right)}} = x - \frac{1}{{\sqrt {x + 1} }}\).
\[ \Rightarrow f\left( x \right) = \int {f'\left( x \right)} {\rm{d}}x = \int {\left( {x - \frac{1}{{\sqrt {x + 1} }}} \right){\rm{d}}x} = \frac{{{x^2}}}{2} - 2\sqrt {x + 1} + C\].
Mà \(f\left( 3 \right) = \frac{9}{2} \Rightarrow \frac{9}{2} = \frac{9}{2} - 4 + C \Leftrightarrow C = 4\). Do đó \[f\left( x \right) = \frac{{{x^2}}}{2} - 2\sqrt {x + 1} + 4\].
\( \Rightarrow \int\limits_0^3 {f\left( x \right)} {\rm{d}}x = \int\limits_0^3 {\left( {\frac{{{x^2}}}{2} - 2\sqrt {x + 1} + 4} \right)} {\rm{d}}x\)\[ = \left. {\frac{{{x^3}}}{6}} \right|_0^3 - \frac{4}{3}\left. {\sqrt {{{\left( {x + 1} \right)}^3}} } \right|_0^3 + \left. {4x} \right|_0^3 = \frac{{43}}{6}\]
Chọn đáp án C
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247