A.\[10\].
B. \[8\].
C.\[80\].
D.\[18\].
A.\[54\].
B. \[6\].
C.\[18\].
D.\[12\].
A.\[\frac{3}{4}\pi {l^2}\].
B.\[2\pi r{l^2}\].
C.\[4\pi {r^2}\].
D.\[\frac{3}{4}{\pi ^2}l\].
A.\(\left( { - 2;\,2} \right)\).
B.\(\left( {0;\,2} \right)\).
C.\(\left( {3;\, + \infty } \right)\).
D.\(\left( { - \infty ;\,1} \right)\).
A. 9.
B. 27.
C. 3.
D. 81.
A. \[x = 4\].
B. \(x = - \frac{1}{4}\).
C. \[x = 2\].
A.\[f\left( 1 \right) = - 2.\]
B. \[f\left( 1 \right) = 10.\]
C. \[f\left( 1 \right) = - 10.\]
D. \[f\left( 1 \right) = 2.\]
A.\(x = - 2\).
B.\(x = - 1\).
C. \(x = - 4\).
D. \(x = 1\).
A.\(4\).
B.\({\log _a}b\).
C.\(1\).
D.\(4{\log _a}b\).
A. \({e^x} - \frac{2}{x} + C\).
B. \({e^x} - 2\ln {x^2} + C\).
C. \({e^x} + \frac{2}{x} + C\).
D. \({e^x} + \frac{1}{x} + C\).
A. \(1\).
B. \(\sqrt 3 \).
C. \(\sqrt 5 \).
D. \(3\).
A. \( - 1\).
B. 1.
C. 0.
D. 3.
A. \(\overrightarrow n = \left( { - 3;\, - 6;\, - 2} \right)\).
B. \(\overrightarrow n = \left( {2;\, - 1;\,3} \right)\).
C.\(\overrightarrow n = \left( {3;\,6;\, - 2} \right)\).
D. \(\overrightarrow n = \left( { - 2;\, - 1;\,3} \right)\).
A. \(N\left( {2; - 1; - 3} \right)\).
B. \(P\left( {5; - 2; - 1} \right)\).
C. \(Q\left( { - 1;0; - 5} \right)\).
D.\(M\left( { - 2;1;3} \right)\).
A. 45
B. 60
C. 30
D. 90
A. \(3\).
B. \(0\).
C. \(1\).
D. \(2\)
A. \(\frac{{23}}{2}\).
B. \(\frac{7}{2}\).
C. \( - 2\).
D. \(16\).
A. \({a^{ - 9}} = {b^8}\).
B. \({a^2} = b\).
C. \({a^4} = {b^3}\).
D. \(a = {b^3}\).
A. \(\left( { - \infty ;\,\, - 2} \right)\).
B. \(\left( { - \infty ;\,\, - 2} \right) \cup \left( {1;\,\, + \infty } \right)\).
C.\(\left( { - 2;\,\,1} \right)\).
D. \(\left( {1;\,\, + \infty } \right)\).
A. \[{S_{xq}} = 2\sqrt 2 \pi .\]
B.\[{S_{xq}} = 4\pi .\]
C.\[{S_{xq}} = \sqrt 2 \pi .\]
D. \[{S_{xq}} = 2\pi .\]
A.\[0\].
B.\[3\].
C.\[1\].
D.\[2\].
A. \[x + 6\ln \left( {x - 2} \right) + C\].
B.\(x + 6\ln \left( {2 - x} \right) + C\).
C.\(x - \frac{6}{{{{\left( {x - 2} \right)}^2}}} + C\).
D. \[x + \frac{6}{{{{\left( {x - 2} \right)}^2}}} + C\].
A. \(7879\) triệu người.
B. \(7680\) triệu người.
C. \(7782\) triệu người.
D. \(7777\) triệu người.
A. 480 cm3
B. 360 cm3.
C. 240 cm3
D. 120 cm3
A.\(1\).
B.\(2\).
C.\(3\).
D. \(4\).
A. \(a < 0,\,c < 0,\,d < 0\).
B. \(a < 0,\,c >0,\,d < 0\).
C. \(a >0,\,c >0,\,d >0\).
D. \(a >0,\,c < 0,\,d >0\).
A. \(2 - 2i\).
B. \(2i\).
C. \(2\).
D. \(2 + 2i\).
A. \(3\).
B.\(2\).
C.\[1\].
D.\(0\).
A. \(0\).
B.\(1\).
C.\[2\].
D.\(3\).
A. \((S):{\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 1} \right)^2} = 3\).
B. \((S):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 3\).
C. \((S):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 9\).
D. \((S):{\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 1} \right)^2} = 9\).
A.\(x - y - 4z + 10 = 0\).
B. \(x + y + 4z - 8 = 0\).
C. \(x - y + 4z - 6 = 0\).
D. \(x + y - 4z + 8 = 0\).
A. \(\overrightarrow u = \left( { - 3;\,0;\,2} \right)\).
B. \(\overrightarrow u = \left( {0;\,3;\,1} \right)\).
C. \(\overrightarrow u = \left( {2;\, - 1;\,2} \right)\).
D. \(\overrightarrow u = \left( {1;\, - 4;\, - 2} \right)\).
A. \(\frac{4}{{135}}.\)
B. \(\frac{4}{{85}}.\)
C. \(\frac{3}{{20}}.\)
D. \(\frac{5}{{158}}.\)
A. \(\frac{{a\sqrt 5 }}{{10}}\).
B. \(\frac{{a\sqrt 5 }}{5}\).
C. \(\frac{{2a\sqrt 5 }}{5}\).
D. \(\frac{{a\sqrt 5 }}{{15}}\).
A. \(\frac{{52}}{6}\).
B. \( - \frac{{101}}{6}\).
C. \(\frac{{43}}{6}\).
D. \( - \frac{{29}}{6}\).
A. \(m \in {\rm{[}}0; + \infty )\).
B. \(m \in ( - \infty ;0)\).
C. \(m \in (0;1) \cup (1; + \infty )\).
D. \(m \in {\rm{[}}0;1) \cup (1; + \infty )\).
A. \(\frac{{16\sqrt 3 \pi }}{3}\).
B. \(\frac{{16\sqrt {10} \pi }}{3}\).
C. \(\frac{{8\sqrt {10} \pi }}{3}\).
D. \(\frac{{8\sqrt 3 \pi }}{3}\).
A. \(\frac{a}{b} \in \left( {2;3} \right)\).
B. \(\frac{a}{b} \in \left( {3;9} \right)\).
C. \(\frac{a}{b} \in \left( {0;2} \right)\).
D. \(\frac{a}{b} \in \left( {9;16} \right)\).
A. \[ - \frac{1}{3}\].
B. \[2\].
C. \[\frac{2}{3}\].
D. \[\frac{8}{3}\].
A. \[4033\].
B. \[4034\].
C. \[4035\].
D. \[4036\].
A. \(\cos x - \sin x + x + C\).
B. \( - \cos x + \sin x + x + C\).
C. \(\cos x - \sin x - x + C\)
D. \( - \cos x - \sin x - x + C\)
A. 3.
B. 5.
C. 0.
D. 1.
A. \(2041200\).
B. \(2041204\).
C. \(2041195\).
D. \(2041207\).
A. 1.
B. 2.
C. 10.
D. 4.
A.\[ - 2\].
B. \( - 24\).
C.\(8\).
D.\(16\).
A. \(\frac{3}{{2\sqrt {15} }}\).
B. \(\frac{1}{{\sqrt {15} }}\).
C. \(\frac{{\sqrt {14} }}{{\sqrt {15} }}\).
D. \(\frac{{\sqrt {14} }}{{3\sqrt {15} }}\).
A.306.
B. 1.
C. 35.
D. 17.
A.4.
B. 3.
C. 9.
D.\(\frac{1}{4}\).
A. \(\left( {\frac{1}{2};2} \right)\).
B. \(\left( {2;4} \right)\).
C.\(\left( { - 1;0} \right)\).
D. \(\left( {3;6} \right)\).
A. \(\left( {1; + \infty } \right)\).
B. \(\left[ {1; + \infty } \right)\).
C. \(\left( { - \infty ;1} \right)\).
D.\(\left( {3; + \infty } \right)\).
A.\(\frac{{2{a^3}\sqrt 3 }}{3}\).
B.\(\frac{{2{a^3}\sqrt 3 }}{2}\).
C.\(\frac{{2{a^3}}}{3}\).
D.\(\frac{{5{a^3}}}{{\sqrt 3 }}\).
A. \[F'\left( x \right) = - f\left( x \right)\], \[\forall x \in K\].
B. \[g'\left( x \right) = G\left( x \right)\], \[\forall x \in K\].
C. \[F'\left( x \right) + G'\left( x \right) = f\left( x \right) - g\left( x \right)\], \[\forall x \in K\].
D. \[F'\left( x \right) + G'\left( x \right) = f\left( x \right) + g\left( x \right)\], \[\forall x \in K\].
A. \(8\).
B. \(24\).
C. \(12\).
D. \(72\).
A.\(R = a\).
B.\(R = a\sqrt 2 \).
C.\(R = a\sqrt 3 \).
D.\(R = 2a\).
A.\(S = \pi {R^2}\).
B. \(V = \frac{4}{3}\pi {R^3}\).
C. \(S = 4\pi {R^2}\).
D. \(3V = S.R\).
A. \(\left( { - 1;\,\,0} \right)\).
B. \(\left( { - 1;\,\,1} \right)\).
C. \(\left( { - \infty ;\,\, - 1} \right)\).
D. \[8a + d\].
A.\(y' = \frac{{{7^x}}}{{\ln 7}}\) .
B.\(y' = {7^x}\ln 7\).
C.\(y' = x{.7^{x - 1}}\).
D.\(y' = {7^{x - 1}}\ln 7\).
A. \(2\).
B. \(0\).
C. \(1\).
D. Vô số.
A. \(x = 3\).
B. \(x = 1\).
C. \(x = 2\).
D. \(x = - 1\).
A. \(a >0;d >0\).
B. \(a < 0;d >0\).
C. \(a >0;d < 0\).
D. \(a < 0;d < 0.\)
A. \[y = 1\].
B. \[y = - 2\].
C. \[x = 1\].
D. \[x = - 2\].
A. \[\left[ {4; + \infty } \right)\].
B. \[\left[ {2; + \infty } \right)\].
C. \[\left( {4; + \infty } \right)\].
D. \[\left( { - \infty ;4} \right]\].
A. \(6\).
B. \(5\).
C. \(3\).
D. \(4\).
A. 3.
B. 2.
C. 1.
D. 4.
A. \(\left( {4;3} \right)\).
B. \(\left( { - 4;3} \right)\).
C. \(\left( {4; - 3} \right)\).
D. \(\left( { - 4; - 3} \right)\).
A. \(\overline w = 3 - 7i\).
B. \(\overline w = 7 - 3i\).
C. \(\overline w = 7 + 3i\).
D. \(\overline w = 4 - i\).
A. \(M\left( { - 1\,;\,0} \right)\).
B. \(N\left( {0\,;\, - 1} \right)\).
C. \(P\left( {1\,;\,0} \right)\).
D. \(Q\left( {0;\,1} \right)\).
A. \(\left( {1\,;\,0\,;\,0} \right)\).
B. \(\left( {3\,;\, - 1\,;\,0} \right)\).
C. \(\left( {3\,;\,0\,;\,2} \right)\).
D. \(\left( {0\,;\, - 1\,;\,2} \right)\).
A.\(I\left( {1;2;3} \right);R = 3\).
B.\(I\left( { - 1;2; - 3} \right);R = 3\).
C.\(I\left( {1; - 2;3} \right);R = 3\).
D.\(I\left( {1;2; - 3} \right);R = 3\).
A.\(x + 2z = 0\).
B. \(x - 2z = 0\).
C. \(y - z - 2 = 0\).
D.\(y + z = 0\).
A. Song song.
B. Chéo nhau.
C. Cắt nhau.
D. Trùng nhau.
A. \(\frac{{\sqrt 3 }}{2}\).
B. \(\frac{{\sqrt 2 }}{2}\).
C. \(\frac{1}{2}\).
D. \(\frac{1}{3}\).
A. \(2\).
B. \(3\).
C. \(1\).
D. \(4\).
A. \[20\].
B. \[13\].
C. \[ - 3\].
D. \[ - 7\].
A. \[a = {b^5}\].
B. \[{a^5} = {b^3}\].
C. \[{a^5}.b = 1\].
D. \[{a^5}.{b^3} = 1\].
A. \(y = - {x^3} + 3{x^2} - 2.\)
B. \(y = {x^3} - 6{x^2} + 9x + 2.\)
C. \(y = {x^3} - 3{x^2} - 2.\)
D. \(y = {x^3} - 6{x^2} + 9x - 2.\)
A. \(\left( { - \infty ;\frac{1}{2}} \right] \cup \left[ {16; + \infty } \right)\).
B. \(\left( { - \infty ;\frac{1}{2}} \right) \cup \left( {16; + \infty } \right)\).
C. \(\left( {0;\frac{1}{2}} \right] \cup \left[ {16; + \infty } \right)\).
D. \(\left( {0;\frac{1}{2}} \right) \cup \left( {16; + \infty } \right)\).
A. \(4\pi {a^2}\).
B. \(\pi {a^2}\sqrt 2 \).
C. \(8\pi {a^2}\).
D. \(4\pi {a^2}\sqrt 2 \).
A. \(I = 4\).
B. \(I = - 4\).
C. \(I = - 2\).
D. \(I = 2\).
A.\(S = \pi \int\limits_0^2 {\left( {2{x^2} - 2} \right){\rm{d}}x} \).
B.\(S = 2\int\limits_0^2 {\left| {{x^2} - 1} \right|{\rm{d}}x} \).
C.\(S = \int\limits_0^2 {\left( {2{x^2} - 2} \right){\rm{d}}x} \).
D.\(S = 2\pi \int\limits_0^2 {\left| {{x^2} - 1} \right|{\rm{d}}x} \).
A. \(M\).
B. \(N\).
C. \[P\].
D. \(Q\).
A. \(6\).
B. \(\sqrt 2 \).
C. \(4\).
D. \(\sqrt 6 \).
A. \(3x + y + z - 6 = 0\).
B. \(6x - 2y - 2z - 1 = 0\).
C. \(3x - y - z + 1 = 0\).
D. \(3x - y - z = 0\).
A.\(\left\{ \begin{array}{l}x = t\\y = 1 + 3t\\z = 2 - 2t\end{array} \right.\).
B.\(\left\{ \begin{array}{l}x = 1\\y = 3 - 3t\\z = - 2 + 6t\end{array} \right.\).
C.\(\left\{ \begin{array}{l}x = 1\\y = 3 + 2t\\z = - 2 + t\end{array} \right.\).
D.\(\left\{ \begin{array}{l}x = 1\\y = 3 + t\\z = - 2 + 2t\end{array} \right.\).
A. \(\frac{1}{{247}}\) .
B. \(\frac{1}{{481}}\).
C. \(\frac{{18}}{{9139}}\).
D. \(\frac{1}{{5928}}\) .
A. \(\frac{{a\sqrt {210} }}{{70}}\).
B. \(\frac{{2a\sqrt {210} }}{{35}}\).
C. \(\frac{{3a\sqrt {210} }}{{35}}\).
D. \(\frac{{a\sqrt {210} }}{{35}}\).
A. 3.
B. 4.
C. 5
D. 6.
A. \(39\) (ngày).
B. \(40\) (ngày).
C. \(41\) (ngày).
D. \(42\) (ngày).
A. \(1\).
B.\(2\).
C. \(3\).
D. \(4\).
A.\(506\).
B.\(\frac{{1009}}{2}\).
C.\(\frac{{2019}}{2}\).
D.\[505\].
A. \(169\pi {a^3}\).
B. \(52\pi {a^3}\).
C.\(104\pi {a^3}\).
D. \(\frac{{104\pi {a^3}}}{3}\).
A. \(11\).
B. \(12\).
C. \(10\).
D. \(9\).
A. \[\left( {13;15} \right)\].
B. \[\left( { - 15, - 13} \right)\].
C. \[\left( {4;6} \right)\].
D. \[\left( { - 6; - 4} \right)\].
A. \(V = \frac{{9\sqrt 2 {a^3}}}{{320}}\).
B. \(V = \frac{{3\sqrt 2 {a^3}}}{{320}}\).
C. \(V = \frac{{\sqrt 2 {a^3}}}{{96}}\).
D. \(V = \frac{{3\sqrt 2 {a^3}}}{{80}}\).
A. \[2020\].
B. \[P = 2018\].
C. \[P = 2019\].
D. \[P = 2021\].
A. \(2018.\)
B. \(2019.\)
C. \(2020.\)
D. \(2021.\)
A. \(6\).
B. \(4\).
C. \(1\).
D. \(24\).
A. \({S_5} = 30\).
B. \({S_5} = 12\).
C. \({S_5} = 60\).
D. \({S_5} = 24\).
A. \(\left( { - \infty \,;\,15} \right)\).
B. \(\left( {15\,;\, + \infty } \right)\).
C. \(\left( { - \infty \,;\,3} \right)\).
D. \(\left( {3\,;\, + \infty } \right)\).
A. \(12\).
B. \(4\).
C. \(8\).
D. \(6\).
A. \(\left[ { - \frac{1}{2}; + \infty } \right)\).
B. \(\left( { - \frac{1}{2}; + \infty } \right)\).
C. \(\left( { - \infty ; - \frac{1}{2}} \right)\).
D. \(\left( { - \infty ; - \frac{1}{2}} \right]\).
A. \[\int {kf\left( x \right){\rm{d}}x = k\int {f\left( x \right){\rm{d}}x} } \] với \(k \in \mathbb{R}\backslash \left\{ 0 \right\}\).
B. \(\int {\left[ {f\left( x \right)g\left( x \right)} \right]{\rm{d}}x = \int {f\left( x \right){\rm{d}}x.\int {g\left( x \right){\rm{d}}x} } } \).
C. \(\int {\left[ {f\left( x \right) + g\left( x \right)} \right]{\rm{d}}x = \int {f\left( x \right){\rm{d}}x + \int {g\left( x \right){\rm{d}}x} } } \).
D. \(\int {f'\left( x \right){\rm{d}}x = f\left( x \right) + C} \) với \[C \in \mathbb{R}\].
A. \(V = 12\).
B. \(V = 8\).
C. \(V = 16\).
D. \(V = 4\).
A. \(2\sqrt 2 a\).
B. \(\sqrt 2 a\) .
C. \(2a\).
D. \(a\).
A. 9
B. 10
C. 18
D. 27
A. \(\left( { - \infty ;1} \right)\).
B. \(\left( { - 1;3} \right)\).
C. \(\left( {7; + \infty } \right)\).
D. \(\left( { - 1; + \infty } \right)\).
A. \({a^3}\).
B. \(3\).
C. \({3^a}\).
D. \(3a\) .
A. \(45\pi {\rm{ c}}{{\rm{m}}^2}\).
B. \(90\pi {\rm{ c}}{{\rm{m}}^2}\).
C. \(30\pi {\rm{ c}}{{\rm{m}}^2}\).
D. \(15\pi {\rm{ c}}{{\rm{m}}^2}\).
A. \(x = 0\).
B. \(x = 2\).
C. \(y = 1\).
D. \(y = \frac{4}{3}\).
A. \(y = - {x^3} + 1\).
B. \(y = - 2{x^3} + {x^2}\).
C. \(y = 3{x^2} + 1\).
D. \(y = - 4{x^3} + 1\).
A. \(x = 3\).
B. \(x = - \frac{5}{3}\).
C. \(y = - \frac{5}{3}\).
D.\(y = 3\).
A.\(x \le \frac{4}{3}\).
B. \(x \ge \frac{{11}}{3}\).
C.\(x \le \frac{{11}}{3}\).
D.\(x \ge \frac{4}{3}\).
A. \[y\, = \, - \,{x^3}\, + \,3x\, + \,2\].
B. \[y\, = \, - \,{x^3}\, + \,3{x^2}\, - \,2\].
C. \[y\, = {x^3}\, - \,3x\, + \,2\].
A. \(I = \frac{9}{4}\).
B. \(I = 36\).
C. \(I = 13\).
D. \(I = 5\).
A. \(M\left( { - 2;3} \right)\).
B. \(M\left( {2; - 3} \right)\).
C. \(M\left( { - 3; - 2} \right)\).
D. \(M\left( { - 2; - 3} \right)\).
A. \({z_1}.{z_2} = - 3 - 7i\).
B. \({z_1}.{z_2} = 9 - 7i\).
C. \({z_1}.{z_2} = 9 + 7i\).
D. \({z_1}.{z_2} = 7 - 9i\).
A. \(\frac{{43}}{3}\).
B. \(\frac{8}{3}\).
C. \(7\).
D. \(3\).
A. \(30\pi \,\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).
B. \(28\pi \,\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).
C. \(24\pi \,\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).
D. \(26\pi \,\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).
A. \[{(x - 2)^2} + {(y - 2)^2} + {z^2} = 4\].
B. \[{(x + 2)^2} + {(y + 2)^2} + {z^2} = 5\].
C. \[{(x - 2)^2} + {(y - 2)^2} + {z^2} = \sqrt 5 \].
D. \({(x - 2)^2} + {(y - 2)^2} + {z^2} = 5\).
A. \[\overrightarrow {{n_4}} \left( {4;2; - 2} \right)\].
B. \[\overrightarrow {{n_2}} \left( { - 2; - 1;1} \right)\].
C. \[\overrightarrow {{n_3}} \left( {2;1;1} \right)\].
D. \[\overrightarrow {{n_1}} \left( {2;1; - 1} \right)\].
A. \(\frac{x}{3} = \frac{y}{{ - 3}} = \frac{z}{{ - 5}}\).
B. \(\frac{x}{1} = \frac{y}{3} = \frac{z}{{ - 5}}\).
C. \(\frac{{x + 1}}{{ - 1}} = \frac{y}{3} = \frac{{z + 2}}{5}\).
D. \(\frac{x}{1} = \frac{y}{{ - 3}} = \frac{z}{{ - 5}}\).
A. \(a\sqrt 2 \).
B. \(a\).
C. \(2a\sqrt 2 \).
D. \(\frac{{a\sqrt 2 }}{2}\).
A. \(2\sqrt 3 \).
B. \(5\sqrt 2 \).
C. \(20\).
D. \(2\sqrt 5 \).
A. \(\frac{5}{{12}}\).
B. \(\frac{3}{4}\).
C. \(\frac{1}{8}\).
D. \( - \frac{3}{4}\).
A. \(2019\).
B. \(2021\).
C. \(2020\).
D. \(2022\).
A. \[\left( { - 4;1} \right) \cup \left\{ 3 \right\}\].
B. \[\left( { - 4;1} \right] \cup \left\{ 3 \right\}\].
C. \[\left( { - \infty ;1} \right]\].
D. \[\left( { - 4;1} \right)\].
A. \(31\).
B. \(32\).
C. \(5\).
D. \(6\).
A. \[\frac{{3\pi {a^3}}}{4}\].
B. \(\frac{{7\pi {a^3}}}{3}\).
C. \(\frac{{4\pi {a^3}}}{3}\).
D. \(3\pi {a^3}\).
A. \(2\int\limits_{\sqrt 3 }^2 {{t^2}{\rm{d}}t} \).
B. \( - 2\int\limits_{\sqrt 3 }^2 {{t^2}{\rm{d}}t} \).
C. \(2\int\limits_{\sqrt 3 }^2 {t\sqrt {{t^2} - 3} {\rm{d}}t} \).
D. \[ - 2\int\limits_{\sqrt 3 }^2 {t\sqrt {{t^2} - 3} {\rm{d}}t} \].
A. \(S = \int\limits_{ - 1}^1 {\left( {{x^2} + x} \right)} {\rm{d}}x\).
B. \(S = \int\limits_1^{ - 1} {\left( {{x^2} + x} \right)} {\rm{d}}x\).
C. \(S = \int\limits_0^3 {\left( {{x^2} - 3x} \right)} {\rm{d}}x\).
D. \(S = \int\limits_0^3 {\left( {3x - {x^2}} \right)} {\rm{d}}x\).
A. Độ dài của véc tơ \(\overrightarrow {OM} \) được gọi là mô đun của số phức \[z\].
B. Độ dài của đoạn thẳng \(MM'\) bằng mô đun của số phức \(z - z'\).
C. Số phức \(z\) được gọi là số phức liên hợp của số phức \(z'\) khi và chỉ khi điểm \(M\) đối xứng với điểm \(M'\) qua trục \(Oy\).
D. Số phức \(z\) được gọi là số phức đối của số phức \(z'\) khi và chỉ khi điểm \(M\) đối xứng với điểm \(M'\) qua gốc tạo độ \(O\).
A. \(P\left( {3;\,\,2} \right)\).
B. \(N\left( {1;\,\, - 2} \right)\).
C. \(Q\left( {3; - 2} \right)\).
D. \(M\left( {1;\,\,2} \right)\).
A. \(\left( d \right):\left\{ \begin{array}{l}x = 3 - 2t\\y = 2 - 5t\\z = 1\end{array} \right.\).
B. \(\left( d \right):\left\{ \begin{array}{l}x = 3 + 2t\\y = 2 + 5t\\z = 1\end{array} \right.\).
C. \(\left( d \right):\left\{ \begin{array}{l}x = 3 + 2t\\y = 2 - 5t\\z = t\end{array} \right.\).
D. \(\left( d \right):\left\{ \begin{array}{l}x = 3 + 2t\\y = 2 - 5t\\z = 1\end{array} \right.\)
A. \[x = 0\].
B. \[x + y + z = 0\].
C. \[y = 0\].
D. \[z = 0\].
A. \(\frac{1}{{24}}\).
B. \(\frac{1}{{36}}\).
C. \(\frac{1}{{12}}\).
D. \(\frac{1}{6}\).
A. \[\frac{{a\sqrt 6 }}{4}\].
B. \[\frac{{a\sqrt 2 }}{4}\].
C. \[\frac{{2a\sqrt 6 }}{3}\].
D. \[\frac{{3a\sqrt 2 }}{4}\]
A. \(29\).
B. \(28\).
C. \(30\).
D. \(27\).
A. \[{e^{34}}\] lần.
B. \({e^{35}}\) lần.
C. \({e^{ - 35}}\) lần.
D. \[{e^{ - 34}}\] lần.
A. 3
B. 4.
C. 5.
D. 6.
A. \[S = 576\pi (c{m^2})\].
B. \[S = 567\pi (c{m^2})\].
C. \[S = 675\pi (c{m^2})\].
D. \[S = 2304\pi (c{m^2})\]
A. \[\frac{{7\pi }}{{60}}\].
B. \[\frac{{7\pi }}{{50}}\].
C. \[\frac{\pi }{{10}}\].
D. \[\frac{{7\pi }}{{30}}\].
A.\(\left[ \begin{array}{l}m = 10\\m = - 2\end{array} \right.\).
B. \(m = 10\).
C. \(m = - 2\).
D. \(m \in \left( { - 2;10} \right)\).
A. \(M = 3\).
B. \[M = 6\].
C. \[M = 0\].
D. \(M = 1\).
A. \[ - 8\].
B. \[ - 4\].
C. \[4\].
D. \[8\].
A. \(\frac{7}{{18}}\).
B. \(\frac{{11}}{{18}}\).
C. \(\frac{{13}}{{18}}\).
D. \(\frac{1}{{18}}\).
A. \(\sqrt {13} - 3\) và \(\sqrt {13} - 3\).
B. \(\sqrt {13} - 3\).
C. \({\left( {\sqrt {13} - 3} \right)^2}\).
D. \({\left( {\sqrt {13} - 3} \right)^2}\) và \({\left( {\sqrt {13} + 3} \right)^2}\).
A. \(C_6^1.C_6^2.C_6^3\).
B. \(A_6^1.A_6^2.A_6^3\).
C. \(A_6^1.A_5^2.1\).
D. \(C_6^1.C_5^2.1\).
A. \({u_{10}} = - 31\).
B. \({u_{10}} = - 23\).
C. \({u_{10}} = - 20\).
D. \({u_{10}} = 15\).
A. \(S = \left\{ 0 \right\}\).
B. \(S = \left\{ 5 \right\}\).
C. \(S = \left\{ 4 \right\}\).
D.\(S = \left\{ {0\,;\,5} \right\}\).
A. \(\frac{1}{3}{a^3}\sqrt 2 \).
B. \(\frac{1}{3}{a^3}\sqrt 3 \).
C. \(2{a^3}\sqrt 3 \).
D. \({a^3}\sqrt 3 \).
A. \[D = ( - \infty ; - 1)\].
B. \[D = (0; + \infty )\].
C. \[D = \mathbb{R}\].
D. \[D = ( - \infty ; - 1) \cup (1; + \infty )\].
A. \(I = 2\int\limits_0^3 {\sqrt u } du\).
B. \(I = \int\limits_1^2 {\sqrt u } du\).
C. \(I = 2\int\limits_1^2 {\sqrt u } du\).
D. \(I = \int\limits_0^3 {\sqrt u } du\).
A. 5.
B. 10.
C. 15.
D. 30.
A. \[36\pi \].
B. \[12\pi \].
C. \[15\pi \].
D. \[45\pi \].
A. \[36\pi \].
B. \[18\pi \].
C. \[9\pi \].
D. \[72\pi \].
A. \((\frac{1}{2};\,1)\).
B. \((0;\,\frac{1}{2})\).
C. \(( - \infty ;\,0)\).
D. \((1;\, + \infty )\).
A. \(\frac{3}{2}{\log _2}a\).
B. \(\frac{1}{3}{\log _2}a\).
C. \(3 + 3{\log _2}a\).
D. \(3{\log _2}a\).
A. \(6\pi l\)\(({m^2})\).
B. \(6l\)\(({m^2})\).
C. \(3l\)\(({m^2})\).
D. \(3\pi l\)\(({m^2})\).
A.\( - \frac{{25}}{4}\).
B.\( - \frac{{\sqrt 2 }}{2}\).
C.\( - 6\).
D.\(0\).
A.\(y = {x^3} - 2x + 1\).
B.\(y = - {x^3} + 2x - 1\).
C.\(y = - {x^4} + 2{x^2} - 1\).
D.\(y = {x^4} + 2{x^2} - 1\).
A.\[y = - 1\].
B.\[x = 1\].
C.\[x = - 1\].
D.\[x = 1\] và \[x = - 1\].
A. \(\left( {0; + \infty } \right)\).
B. \(\left( {2; + \infty } \right)\) .
C. \(\left( {4; + \infty } \right)\).
D. \(\left( {1; + \infty } \right)\).
A. \[2\].
B. \[1\].
C. \[ - 1\].
D. \[ - 2\].
A. \(1\).
B. \(3\) .
C. \(4\).
D. \(2\).
A. \(Q\left( {2\,;\, - 3} \right)\).
B. \(P\left( {2\,;3} \right)\).
C. \(N\left( {3\,;\, - 2} \right)\).
D. \(M\left( { - 3\,;\,2} \right)\).
A. \(z = \frac{1}{{10}} + \frac{7}{{10}}i\).
B. \(z = \frac{1}{5} + \frac{7}{5}i\).
C. \(z = \frac{1}{5} - \frac{7}{5}i\).
D. \(z = - \frac{1}{{10}} + \frac{7}{{10}}i\).
A. \(Q\left( {1\,;\,2} \right)\).
B. \(P\left( { - 1\,; - \,2} \right)\).
C. \(N\left( {1\,;\, - 2} \right)\).
D. \(M\left( { - 1\,;\,2} \right)\).
A. \(\left( {2;0;0} \right)\).
B. \(\left( {2;0;1} \right)\).
C. \(\left( {0; - 3;1} \right)\).
D. \(\left( {2; - 3;0} \right)\).
A. \(\left( {1; - 2;0} \right)\).
B. \(\left( { - 1;2;0} \right)\).
C. \(\left( { - 1;2;1} \right)\) .
D. \(\left( {1; - 2;1} \right)\).
A. \(M\left( {1;2;2} \right)\) .
B. \(N\left( {0;2;3} \right)\).
C. \(P\left( { - 1;4;2} \right)\) .
D. \(Q\left( { - 1;2;1} \right)\) .
A. \(\overrightarrow {{n_1}} = \left( {3\,; - 4;\,2} \right)\).
B. \(\overrightarrow {{n_2}} = \left( { - 3;0;4} \right)\).
C. \(\overrightarrow {{n_3}} = \left( {3; - 4;0} \right)\).
D. \(\overrightarrow {{n_4}} = \left( {4\,;0\,; - 3} \right)\).
A. \(60^\circ \).
B. \(90^\circ \).
C. \(30^\circ \).
D. \(45^\circ \).
A. \(4\).
B. \(2\).
C. \(3\).
D. \(1\).
A. -1.
B.11.
C.55.
D.48.
A. \(P = 6{\log _a}b\).
B. \(9{\log _a}b\).
C. \(15{\log _a}b\).
D. \(27{\log _a}b\).
A. 1.
B. 2.
C.3.
D.4.
A.\(2017\).
B.\(2018\).
C.\(2019\).
D.\(2020\).
A.\(\sqrt 2 \pi {a^2}\).
B.\(2\sqrt 2 \pi {a^2}\).
C. \(4\pi {a^2}\).
D.\(4\sqrt 2 \pi {a^2}\).
A. \(\int\limits_{ - 1}^1 {\sqrt {{u^5}} du} \).
B. \(\frac{1}{3}\int\limits_{ - 1}^1 {\sqrt {{u^5}} du} \).
C. \(\int\limits_1^3 {\sqrt {{u^5}} du} \).
D.\(\frac{1}{3}\int\limits_1^3 {\sqrt {{u^5}} du} \).
A. \[S = \pi \int\limits_{ - 1}^3 {{{\left( {{x^3} - 2{x^2} - 3x} \right)}^2}dx} \].
B. \(S = \int\limits_{ - 1}^3 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} \).
C.\(S = \int\limits_{ - 1}^0 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} + \int\limits_0^3 {\left( {2{x^2} + 3x - {x^3}} \right)dx} \).
D. \(S = \int\limits_{ - 1}^0 {\left( {2{x^2} + 3x - {x^3}} \right)dx} + \int\limits_0^3 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} \).
A. \(a = - 1\).
B. \(a = 2\).
C. \(a = \sqrt 3 \).
D. \(a = 0\).
A. \(2\).
B. \(\frac{3}{4}\).
C. \(\frac{{\sqrt {73} }}{2}\).
D. \(\frac{{\sqrt {73} }}{4}\).
A. \(2x - y + z - 6 = 0\).
B. \(2x - y + z - 2 = 0\).
C. \(x + y + 3z + 7 = 0\).
D.\(x + y + 3z - 7 = 0\).
A.\[\frac{{x - 1}}{{ - 1}} = \frac{{y - 1}}{2} = \frac{{z - 3}}{4}\].
B. \[\frac{{x + 1}}{{ - 1}} = \frac{{y - 2}}{2} = \frac{{z - 2}}{4}\].
C. \(\frac{{x + 1}}{4} = \frac{{y - 2}}{{ - 8}} = \frac{{z - 2}}{5}\).
D.\(\frac{{x - 1}}{4} = \frac{{y - 1}}{{ - 8}} = \frac{{z - 3}}{5}\).
A. \(\frac{{46}}{{125}}\).
B. \(\frac{{121}}{{625}}\).
C. \(\frac{{36}}{{125}}\).
D. \(\frac{{181}}{{625}}\).
A. \[\frac{{3a}}{2}\].
B. \[\frac{{2a}}{3}\].
C. \[\frac{{a\sqrt {15} }}{5}\].
D. \[\frac{{a\sqrt 6 }}{2}\].
A. \(5\).
B. \(4\).
C. \(3\).
D. \(2\).
A. \(a{\rm{d}} >0,{\rm{ }}ab < 0\).
B. \(b{\rm{d}} >0,{\rm{ }}a{\rm{d}} >0\).
C. \(b{\rm{d}} >0,{\rm{ }}ab >0\).
D. \(ab < 0,{\rm{ }}a{\rm{d}} < 0\).
A. \(8\pi {a^2}\).
B. \(\left( {4 + \sqrt 2 } \right)\pi {a^2}\).
C. \(8\sqrt 2 \pi {a^2}\).
D. \(\left( {8 + 8\sqrt 2 } \right)\pi {a^2}\).
A. \[\frac{{{e^{\frac{\pi }{2}}} - {e^{ - \frac{\pi }{2}}}}}{2}\].
B. \[\frac{{{e^{\frac{\pi }{2}}} + {e^{ - \frac{\pi }{2}}}}}{2}\].
C. \[0\].
D.\[1\] .
A.
B. \(3.\)
C. \(4\).
D. \(5\).
A.\[34\].
B.\[21\].
C.\[23\].
D.\[10\].
A. \(3\).
B. \(2\).
C. \(1\).
D. \(4\).
A. \(52\).
B. \(88\).
C. \(60\).
D. \(68\).
A. 2.
B. 3.
C. 4.
D. 1.
A. \(24\).
B. \(10\).
C. \(45\).
D. \(50\).
A. \(24\).
B. \(54\).
C. \( - 54\).
D. \( - 24\).
A. \[x = - 1\].
B. \[x = 0\].
C. \[x = 2\].
D. \[x = 1\].
A. \[4\].
B. \[12\].
C. \[8\].
D. \[18\].
A. \(D = \left( { - 2;2} \right)\).
B. \(D = \left[ { - 2;2} \right]\).
C. \(D = \left( {2; + \infty } \right)\).
D. \(D = \left( {4; + \infty } \right)\).
A. \(\int {{x^\alpha }{\rm{d}}x = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C\,\,\left( {\alpha \ne - 1} \right)} \).
B. \(\int {\sin x{\rm{d}}x = - \cos x + C} \).
C. \(\int {{a^x}{\rm{d}}x = \frac{{{a^x}}}{{\ln a}} + C\,\,\left( {0
D. \(\int {\frac{1}{x}{\rm{d}}x = \ln x + C\,\,\left( {x \ne 0} \right)} \).
A.\(3{a^3}\sqrt 3 \).
B.\(\frac{{{a^3}\sqrt 3 }}{3}\).
C.\({a^3}\sqrt 3 \).
D.\({a^3}\).
A.\(\frac{1}{3}\pi {a^3}\).
B.\(\pi {a^3}\).
C.\(\frac{{\sqrt 3 }}{3}\pi {a^3}\).
D.\(3\pi {a^3}\).
A.
B. \((1\,,\,3)\).
C.\((2\,,\, + \infty )\).
D. \((3\,,\, + \infty )\).
A.\(3\).
B. \(\frac{1}{3}\).
C. \(\frac{1}{4}\).
D. 4.
A. \[{S_{xq}} = 40\pi \].
B. \[{S_{xq}} = 20\pi \].
C. \[{S_{xq}} = 80\pi \].
D. \[{S_{xq}} = 100\pi \].
A. \[A\left( {1;0} \right)\].
B. \[B\left( {2;5} \right)\].
C. \[x = 1\].
D. \[x = 2\].
A.
B. \(y = \frac{{x - 2}}{{x - 1}}\).
C. \(y = \frac{{x - 2}}{{1 - x}}\).
D. \(y = \frac{{x + 2}}{{x + 1}}\).
A. \(32\pi {a^3}\).
B. \(16\pi {a^3}\).
C. \(24\pi {a^3}\).
D. \(\frac{{32\pi {a^3}}}{3}\).
A. \(y = - 1\).
B. \(y = 0\).
C.\(y = - \frac{1}{2}\).
D. \(x = 2\).
A. \(\left( {10\,;\, + \infty } \right)\).
B. \(\left( {0\,;\, + \infty } \right)\).
C. \(\left[ {0\,;\, + \infty } \right)\).
D. \(\left( { - \infty \,;\,10} \right)\).
A. \(3\).
B. \(2\).
C. \(1\).
D. \(4\).
A. \(42\).
B. \(38\).
C. \(34\).
D. \(32\).
A. \(\bar z = - 1 + 2i\).
B. \(\bar z = 2i + 1\).
C. \(\bar z = - 1 - 2i\).
D. \(\bar z = 1 - i\).
A. \(i\).
B. 1.
C. 3.
D. \( - i\).
A. \(z = 4 - 4i\).
B. \(z = 2 - 2i\).
C. \(z = 2\).
D. \( - 1 + i\).
A. \(A\left( {0\,;\,8\,;\,0} \right)\).
B. \(A\left( {9\,;\,8\,;\,0} \right)\).
C. \(A\left( {9\,;\,0\,;\,0} \right)\).
D. \(A\left( {0\,;\,8\,;\, - 1} \right)\).
A. \(M\left( { - 1\,;\,0;\,1} \right)\).
B. \(N\left( {0\,;\,1;\, - 3} \right)\).
C. \(P\left( {4\,;\,5;\,5} \right)\).
D. \(Q\left( {2\,;\,3;\, - 3} \right)\).
A. \(\frac{1}{{\sqrt 2 }}\).
B. \(\frac{1}{{\sqrt 3 }}\).
C. \(\sqrt 2 \).
D. \(\sqrt 3 \).
A. \(1\).
B. \(2\).
C. \(3\).
D. \(4\).
A. \(a \in \left( {1;\;4} \right)\).
B. \(a \in \left( {4;\;7} \right)\).
C. \(a \in \left( {7;\;10} \right)\).
D. \(a \in \left( {10;\;13} \right)\).
A. \(\frac{{25}}{9}\).
B. \(\frac{{16}}{9}\).
C. \(\frac{9}{{16}}\).
D. \(2021\).
A. \(1\).
B. \(3\).
C. \(0\).
D. \(2\).
A. \(20\).
B. \(2\sqrt 5 \).
C. \(6\sqrt 5 \).
D. \(\sqrt 5 \)
A. \(\frac{{48\pi }}{3}\).
B. \(\frac{{80\pi }}{3}\).
C. \(\frac{{64\pi }}{3}\).
D. \(\frac{{32\pi }}{3}\).
A. \( - 12\).
B. \( - 15\).
C. \( - 6\).
D. \( - 9\).
A. \(\frac{{19}}{6}\).
B. \(\frac{{25}}{6}\).
C. \(\frac{{23}}{6}\).
D. \(\frac{{13}}{3}\).
A. \(7\sqrt 2 \).
B. \(3\sqrt 2 \).
C. \(\sqrt 2 \).
D. \(5\sqrt 2 \).
A.\[ - 12\].
B.\[ - 14\].
C.\[ - 13\].
D.\[11\].
A. \(2\).
B. \(1\).
C. \(3\).
D. \(4\).
A. \(1\).
B. \(2\).
C. \(3\).
D. \(4\).
A. 31680.
B. 63360.
C.15840.
D.3600.
B.\(\frac{{a\sqrt {609} }}{{29}}\).
C.\(\frac{{a\sqrt {600} }}{{29}}\).
D.\(\frac{{a\sqrt {906} }}{{29}}\).
A. \[m >1 - f\left( { - 1} \right)\].
B. \[m \ge 1 - f\left( { - 1} \right)\].
C. \[m \ge 1 - f\left( 4 \right)\].
D. \[m >1 - f\left( 4 \right)\].
A. 11 ngày.
B. 13 ngày.
C. 12 ngày.
D. 14 ngày.
A.\[\frac{{8\sqrt 5 }}{3}\].
B. \[8\sqrt 5 \].
C. \[16\sqrt 5 \].
D. \[\frac{{16\sqrt 5 }}{3}\].
A. \[0\].
B. \[1\].
C. \[2\].
D. \[ - 1\].
A. \(60.\)
B. \(63.\)
C. \(62.\)
D. \(61.\)
A. \(3\).
B. \(1\).
C.Vô số.
D. \(2\).
A. \(1302\).
B. \(2697\).
C. \(4263\).
D. \(4165\).
A. \(\frac{7}{3}\).
B. \(\frac{{17}}{7}\).
C. \(\frac{{25}}{7}\).
D. \(\frac{{25}}{{14}}\).
A. \(10\).
B. \(6\).
C. \(7\).
D. \(8\).
A. \(I\left( {0;\,2;\, - 1} \right),R = 2\) .
B. \(I\left( {0;\, - 2;\,1} \right),R = 2\).
C. \(I\left( {0;\,2;\, - 1} \right),R = 4\).
D. \(I\left( {0;\, - 2;\,1} \right),R = 4\).
A. \(\overrightarrow {{n_3}} = \left( {2;\,3;\,1} \right)\).
B. \(\overrightarrow {{n_1}} = \left( {3;\,2;\,1} \right)\).
C.\(\overrightarrow {{n_2}} = \left( {6;\,2;\,4} \right)\).
D.\(\overrightarrow {{n_4}} = \left( { - 2;\, - 3;\,1} \right)\).
A.\[ - \frac{1}{3}\sin 3x + C.\]
B.\[\frac{1}{3}\sin 3x + C.\]
C.\[ - 3\sin 3x + C.\]
D.\[3\sin 3x + C.\]
A.\[\vec n = \left( {0; - 4;3} \right).\]
B.\[\vec n = \left( {1{\mkern 1mu} ;{\mkern 1mu} 4{\mkern 1mu} ;{\mkern 1mu} 3} \right).\]
C.\[\vec n = \left( { - 1;4; - 3} \right).\]
D.\[\vec n = \left( { - 4;3; - 2} \right).\]
A.\[y' = \frac{2}{{2x + 3}}.\]
B.\[y' = \frac{1}{{2x + 3}}.\]
C.\[y' = \frac{2}{{\left( {2x + 3} \right)\ln 2}}.\]
D.\[y' = \frac{1}{{\left( {2x + 3} \right)\ln 2}}.\]
A.\[ + \infty .\]
B.0.
C.\[\frac{1}{{2019}}.\]
A.1.
B.\[ - 1.\]
C.\[ - i.\]
D.3.
A.\[\frac{1}{2}\ln 3.\]
B.\[2\ln 3.\]
C.\[ - \frac{1}{2}\ln 3.\]
D.\[\ln 3.\]
A.1.
B.2.
C.3.
D.0.
A.\[m = - 6.\]
B.\[m = 4.\]
C.\[m = - 2\]
D.\[m = - 4.\]
A.\[{\log _2}\left( {\frac{{2{a^2}}}{b}} \right) = 1 + \frac{1}{2}{\log _2} + {\log _2}b.\]
B.\[{\log _2}\left( {\frac{{2{a^2}}}{b}} \right) = 1 + 2{\log _2} + {\log _2}b.\]
C.\[{\log _2}\left( {\frac{{2{a^2}}}{b}} \right) = 1 + \frac{1}{2}{\log _2} - {\log _2}b.\]
D.\[{\log _2}\left( {\frac{{2{a^2}}}{b}} \right) = 1 + 2{\log _2} - {\log _2}b.\]
A.\[V = 12\pi .\]
B.\[V = 36\pi .\]
C.\[V = 15\pi .\]
D.\[V = 45\pi .\]
A.135.
B.22.
C.32.
D.72.
A.\[S = 7.\]
B.\[S = - 1.\]
C.\[S = 3.\]
D.\[S = - 3.\]
A.
B.\[S = - \int\limits_{ - 3}^{ - 2} {f\left( x \right)dx} + \int\limits_{ - 2}^0 {f\left( x \right)dx} .\]
C.\[S = \int\limits_{ - 3}^0 {f\left( x \right)dx} .\]
D.\[S = \int\limits_{ - 3}^{ - 2} {f\left( x \right)dx} - \int\limits_{ - 2}^0 {f\left( x \right)dx} .\]
A.\[\mathop {\min }\limits_{\left[ {1;4} \right]} {\mkern 1mu} y = 17.\]
B.\[\mathop {\min }\limits_{\left[ {1;4} \right]} {\mkern 1mu} y = 12.\]
C.\[\mathop {\min }\limits_{\left[ {1;4} \right]} {\mkern 1mu} y = 20.\]
D.\[\mathop {\min }\limits_{\left[ {1;4} \right]} {\mkern 1mu} y = 10.\]
A.\[m = 2.\]
B.\[m = - \frac{5}{4}.\]
C.\[m = 3.\]
D.\[m = - 2.\]
A.\[1 + 2i.\]
B.\[1 - 2i.\]
C.\[2 - i.\]
D.\[ - 2 + i.\]
A.3.
B.2.
C.1.
D.4.
A.\[ - \frac{1}{6}.\]
B.\[\frac{1}{6}.\]
C.\[ - \frac{1}{4}.\]
D.\[\frac{1}{4}.\]
A.\[24\pi .\]
B.\[20\pi .\]
C.\[22\pi .\]
D.\[26\pi .\]
A.4.
B.3.
C.2.
D.5.
A.\[S = 4.\]
B.\[S = 2.\]
C.\[S = 8.\]
D.\[S = 6.\]
A.18.
B.24.
C.12.
D.30.
A.\[S = 2.\]
B.\[S = 6.\]
C.\[S = 4.\]
D.\[S = 0.\]
A.\[\left\{ {2;5} \right\}.\]
B.\[\left\{ {3;6} \right\}.\]
C.\[\left\{ 2 \right\}.\]
D.\[\left\{ 3 \right\}.\]
A.\[\frac{{{a^3}}}{2}.\]
B.\[\frac{{{a^3}}}{3}.\]
C.\[\frac{{{a^3}}}{6}.\]
D.\[\frac{{2{a^3}}}{3}.\]
A.1.
B.4.
C.2.
D.3.
A.\[I = 4\]
B.\[I = 3\]
C.\[I = 1\]
D.\[I = 0\]
A.\[90^\circ .\]
B.\[45^\circ .\]
C.\[30^\circ .\]
D.\[60^\circ .\]
A.5.
B.9.
C.7.
D.8.
A.1.
B.5.
C.11
D.7.
A.5
B.\[4\sqrt 2 .\]
C.\[2\sqrt 5 .\]
D.\[3\sqrt 5 .\]
A.
B.\[m >f\left( 1 \right) + 1\]
C.\[m \le f\left( 1 \right) - 1\]
D.\[m < f\left( 1 \right) - 1\]
A.\[d:\frac{{x + 1}}{2} = \frac{{y - 2}}{3} = \frac{{z + 3}}{4}.\]
B.\[d:\frac{{x - 1}}{2} = \frac{{y + 2}}{3} = \frac{{z - 3}}{4}.\]
C.\[d:\frac{{x + 1}}{4} = \frac{{y - 2}}{3} = \frac{{z + 3}}{2}.\]
A.\[\frac{{a\sqrt {15} }}{{10}}.\]
B.\[\frac{{a\sqrt 6 }}{4}.\]
C.\[\frac{{a\sqrt 3 }}{3}.\]
D.\[\frac{{a\sqrt 3 }}{4}.\]
A.
B.\[\frac{{3\pi - 2}}{6}.\]
C.\[\frac{{3\pi + 10}}{6}.\]
D.\[\frac{{3\pi + 10}}{3}.\]
A.\[\frac{1}{{4500}}\]
B.\[\frac{1}{{3500}}\]
C.\[\frac{1}{{2500}}\]
D.\[\frac{1}{{3000}}\]
A.\[a + b < 1.\]
B.\[a + b >2.\]
C.\[1 < a + b < \frac{3}{2}.\]
D.\[\frac{3}{2} < a + b < 2.\]
A.\[20\pi .\]
B.\[16\pi .\]
C.\[22\pi .\]
D.\[18\pi .\]
A.
B.\[ - \frac{1}{2}.\]
C.\[\frac{{97}}{{24}}.\]
D.\[ - \frac{{97}}{{24}}.\]
A.\[\frac{{{V_1}}}{{{V_2}}} = 2\]
B.\[\frac{{{V_1}}}{{{V_2}}} = \frac{1}{2}\]
C.\[\frac{{{V_1}}}{{{V_2}}} = 1\]
D.\[\frac{{{V_1}}}{{{V_2}}} = \frac{2}{3}\]
A.1.
B.2.
C.3.
D.4.
A.2.
B.4.
C.0.
D.3.
A.\[\frac{7}{2}.\]
B.\[4.\]
C.\[\frac{{11}}{2}\]
D.\[6.\]
A.\[x - y - 6 = 0.\]
B.\[x + 3y + 2z + 10 = 0.\]
C.\[x - 2y - 3z - 1 = 0.\]
D.\[3x + z + 2 = 0.\]
A.4.
B.14.
C.\[\sqrt {176} .\]
D.\[\sqrt {106} .\]
A.\[\vec n = \left( {1; - 6;12} \right).\]
B.\[\vec n = \left( {1;6;12} \right).\]
C.\[\vec n = \left( { - 1;6;12} \right).\]
D.\[\vec n = \left( {1;6; - 12} \right).\]
A.\[\left( { - 1;0} \right).\]
B.\[\left( {0;1} \right).\]
C.\[\left( {0; + \infty } \right).\]
D.\[\left( { - 1;1} \right).\]
A.0.
B.9.
C.−7.
D.2.
A.5.
B.1.
C.\[ - 5.\]
D.\[5i.\]
A.\[x = {a^2}{b^3}.\]
B.\[x = {a^2} + {b^3}.\]
C.\[x = 2a + 3b.\]
D.\[x = 3a + 2b.\]
A.\[\frac{{{e^5} - e}}{2}.\]
B.\[\frac{{{e^5} + e}}{2}.\]
C.\[{e^5} - e.\]
D.\[{e^5} + e.\]
A.\[P = \frac{1}{{25}}.\]
B.\[P = \frac{1}{5}.\]
C.\[P = - \frac{1}{{25}}.\]
D.\[P = - \frac{1}{5}.\]
A.\[m = 6.\]
B.\[m = 5.\]
C.\[m = 4.\]
D.\[m = 3.\]
A.1.
B.2.
C.3.
D.4.
A.\[x = 4 + {\log _2}7.\]
B.\[x = 2 + {\log _2}7.\]
C.\[x = 4 - {\log _2}7.\]
D.\[x = 2 - {\log _2}7.\]
A.\[S = - 2.\]
B.\[S = 4.\]
C.\[S = - 1.\]
D.\[S = 5.\]
A.
B.\[S = \int\limits_{ - 1}^0 {f\left( x \right)dx} - \int\limits_0^2 {f\left( x \right)dx} .\]
C.\[S = - \int\limits_{ - 1}^2 {f\left( x \right)dx} .\]
D.\[S = - \int\limits_{ - 1}^0 {f\left( x \right)dx} + \int\limits_0^2 {f\left( x \right)dx} .\]
A.\[{S_{xq}} = 12\pi .\]
B.\[{S_{xq}} = 3\pi \sqrt 7 .\]
C.\[{S_{xq}} = 15\pi .\]
D.\[{S_{xq}} = 20\pi .\]
A.\[1 + i.\]
B.\[1 - i.\]
C.\[2 + 2i.\]
D.\[2 - 2i.\]
A.+∞.
B.0.
C.\[\frac{1}{{2019}}.\]
D.\[\frac{1}{{2020}}.\]
A.\[y' = \frac{{2x\ln 2}}{{\left( {{x^2} + 1} \right)\ln 3}}.\]
B.\[y' = \frac{{x\ln 2}}{{\left( {{x^2} + 1} \right)\ln 3}}.\]
C.\[y' = \frac{{2x}}{{\left( {{x^2} + 1} \right)\left( {\ln 2 - \ln 3} \right)}}.\]
D.\[y' = \frac{x}{{\left( {{x^2} + 1} \right)\left( {\ln 2 - \ln 3} \right)}}.\]
A.\[2{x^2} - \frac{1}{x} + C.\]
B.\[2{x^2} + \frac{1}{x} + C.\]
C.\[{x^2} - \frac{1}{x} + C.\]
D.\[{x^2} + \frac{1}{x} + C.\]
A.6.
B.\[ - \frac{7}{3}.\]
C.\[ - 3.\]
D.\[ - 2.\]
A.\[\frac{{{a^3}}}{8}.\]
B.\[\frac{{{a^3}}}{6}.\]
C.\[\frac{{{a^3}\sqrt 3 }}{8}.\]
D.\[\frac{{{a^3}\sqrt 3 }}{6}.\]
A.\[6x + 3y + 2z - 18 = 0.\]
B.\[6x + 3y + 2z - 6 = 0.\]
C.\[6x - 3y + 2z = 0.\]
D.\[6x - 3y + 2z - 6 = 0.\]
A.\[V = 54\pi {\mkern 1mu} {\rm{c}}{{\rm{m}}^3}.\]
B.\[V = 63\pi {\mkern 1mu} {\rm{c}}{{\rm{m}}^3}.\]
C.\[V = 72\pi {\mkern 1mu} {\rm{c}}{{\rm{m}}^3}.\]
D.\[V = 69\pi {\mkern 1mu} {\rm{c}}{{\rm{m}}^3}.\]
A.5.
B.2.
C.3.
D.4.
A.4.
B.1.
C.2.
A.\[\frac{{59}}{6}\].
B.10.
C.\[\frac{{19}}{2}\].
D.\[\frac{{28}}{3}\].
A.\[\frac{{16{a^3}}}{3}.\]
B.\[\frac{{8{a^3}\sqrt 2 }}{3}.\]
C.\[8{a^3}\sqrt 2 .\]
D.\[6{a^3}\sqrt 3 .\]
A.3780.
B.7560.
C.139.
D.150.
A.\[S = 7.\]
B.\[S = 9.\]
C.\[S = 10.\]
D.\[S = 6.\]
A.\[ - 3 \le m \le 0.\]
B.\[0 < m \le 2.\]
C.\[m \ge 4.\]
D.\[2 < m < 4.\]
A.\[210\pi c{m^3}.\]
B.\[200\pi c{m^3}.\]
C.\[280\pi c{m^3}.\]
D.\[270\pi c{m^3}.\]
A.{4}.
B.{8}.
C.{5;6}.
D.{6;9}.
A.\[\frac{1}{2}.\]
B.\[\frac{1}{3}.\]
C.\[\frac{1}{{\sqrt 5 }}.\]
D.\[\frac{2}{{\sqrt 5 }}.\]
A.\[n \le 4.\]
B.\[n >11.\]
C.\[4 < n \le 8.\]
D.\[8 < n \le 11.\]
A.\[\frac{{a\sqrt {10} }}{4}\]
B.\[\frac{{a\sqrt {10} }}{5}\]
C.\[\frac{a}{4}\]
D.\[\frac{a}{5}\]
A.\[\Delta :\frac{x}{3} = \frac{{y - 2}}{3} = \frac{z}{2}.\]
B.\[\Delta :\frac{{x - 2}}{1} = \frac{{y - 3}}{2} = \frac{{z + 1}}{3}.\]
C.\[\Delta :\frac{{x + 6}}{9} = \frac{{y + 1}}{6} = \frac{{z - 3}}{{ - 1}}.\]
D.\[\Delta :\frac{{x - 4}}{{ - 1}} = \frac{{y - 4}}{1} = \frac{{z + 2}}{4}.\]
A.5.
B.6.
C.4.
D.3.
A.\[\frac{{11}}{3}.\]
B.\[\frac{{13}}{3}.\]
C.\[ - 1.\]
D.1.
A.10.
B.5.
C.11.
D.6.
A. \[m \ge f\left( 0 \right) + 1.\]
B.\[m \ge f\left( 2 \right) + {e^2} + 8.\]
C.\[m >f\left( 0 \right) + 1.\]
D.\[m >f\left( 2 \right) + {e^2} + 8.\]
A.3.
B.0.
C.2019.
D.1.
A.\[\frac{{99}}{{667}}\]
B.\[\frac{{99}}{{167}}\]
C.\[\frac{3}{{11}}\]
D.\[\frac{8}{{11}}\]
A.1.
B.2.
C.3.
D.4.
A.\[2 + 3\sqrt 2 .\]
B.\[3 + 2\sqrt 3 .\]
C.\[1 + \sqrt 5 .\]
D.\[5 + 3\sqrt 2 .\]
A.
B.\[k = - 8.\]
C.\[k = - 6.\]
D.\[k = - 2.\]
A.127.
B.124.
C.5.
D.2.
A.\[r = \sqrt 3 .\]
B.\[r = 6.\]
C.\[r = 3.\]
D.\[r = \sqrt 6 .\]
A.\[\frac{3}{5}\].
B.\[\frac{4}{9}\].
C.\[\frac{3}{4}\].
D.\[\frac{4}{5}\].
A.\[20\ln 3.\]
B.\[10\ln 3.\]
C.\[20\ln \frac{9}{2}.\]
D.\[10\ln \frac{9}{2}.\]
A.\[\frac{{x + 3}}{1} = \frac{y}{{ - 1}} = \frac{{z - 1}}{2}\]
B.\[\frac{{x + 3}}{3} = \frac{y}{{ - 2}} = \frac{{z - 1}}{2}\]
C.\[\frac{{x - 1}}{1} = \frac{y}{{ - 2}} = \frac{{z - 1}}{2}\]
D.\[\frac{{x + 3}}{2} = \frac{y}{{ - 6}} = \frac{{z - 1}}{{ - 7}}\]
A.\[\sqrt {13} - 3.\]
B.\[\sqrt {17} - 3.\]
C.\[\sqrt {17} + 3.\]
D.\[\sqrt {13} + 3.\]
A.
B.
C.
D.
A.
B.
C.
D.
A.
B.
C.
D.
A.
B.
C.
D.
A.
B.
C.
D.
A.
B.
C.
D.
A.\[\vec u = \left( {2;3;1} \right).\]
B.\[\vec u = \left( {2;1; - 2} \right).\]
C.\[\vec u = \left( {2; - 3;1} \right).\]
D.\[\vec u = \left( {2;1;2} \right).\]
A.2.
B.−1.
C.−2.
D.1.
A.\[\vec n = \left( {1; - 6;0} \right).\]
B.\[\vec n = \left( {1; - 6;12} \right).\]
C.\[\vec n = \left( {1;0; - 6} \right).\]
D.\[\vec n = \left( {1;6;0} \right).\]
A.\[y = {x^3} - 3{x^2} + 3x + 1.\]
B.\[y = - {x^3} + 3{x^2} + 1.\]
C.\[y = {x^3} - 3x + 4.\]
D.\[y = - {x^3} - 3{x^2} - 1.\]
A.\[ - \frac{3}{2}.\]
B.\[\frac{3}{2}.\]
C.\[ - \frac{1}{2}.\]
D.\[\frac{1}{2}.\]
A.0.
B.1.
C.\[ + \infty .\]
D.\[ - \infty .\]
A.1.
B.2.
C.3.
D.4.
A.
B.
C.
D.
A.\[\frac{{2 + \sqrt 2 }}{6}.\]
B.\[\frac{{2 - \sqrt 2 }}{6}.\]
C.\[\frac{{2 + \sqrt 2 }}{2}.\]
D.\[\frac{{2 - \sqrt 2 }}{2}.\]
A.\[{S_{xq}} = 20\pi .\]
B.\[{S_{xq}} = 3\pi \sqrt 7 .\]
C.\[{S_{xq}} = 15\pi .\]
D.\[{S_{xq}} = 12\pi .\]
A.\[P = 2020.\]
B.\[P = 2020!.\]
C.\[P = \frac{1}{{2020}}.\]
D.\[P = 1.\]
A.\[S = \int\limits_{ - 1}^2 {f\left( x \right)dx} .\]
B.\[S = \int\limits_{ - 1}^0 {f\left( x \right)dx} - \int\limits_0^2 {f\left( x \right)dx} .\]
C.\[S = - \int\limits_{ - 1}^2 {f\left( x \right)dx} .\]
D.\[S = - \int\limits_{ - 1}^0 {f\left( x \right)dx} + \int\limits_0^2 {f\left( x \right)dx} .\]
A.\[y' = \frac{1}{{2x + 1 + \sqrt {2x + 1} }}.\]
B.\[y' = \frac{2}{{2x + 1 + \sqrt {2x + 1} }}.\]
C.\[y' = \frac{{\sqrt {2x + 1} }}{{2x + 1 + \sqrt {2x + 1} }}.\]
D.\[y' = \frac{{2\sqrt {2x + 1} }}{{2x + 1 + \sqrt {2x + 1} }}.\]
A.
B.
C.
D.
A.16.
B.4.
C.\[ - 16.\]
D.\[ - 4.\]
A.\[3\sqrt[3]{9}.\]
B.7.
C.\[2\sqrt[3]{9}.\]
D.1.
A.\[x = {\log _{\frac{2}{5}}}\frac{9}{{20}}.\]
B.\[x = {\log _{\frac{2}{5}}}\frac{{20}}{9}.\]
C.\[x = {\log _{\frac{5}{2}}}\frac{9}{{20}}.\]
D.\[x = {\log _{\frac{5}{2}}}\frac{{20}}{9}.\]
A.\[P = \frac{7}{{18}}.\]
B.\[P = \frac{{20}}{{29}}.\]
C.\[P = \frac{9}{{29}}.\]
D.\[P = \frac{{21}}{{29}}.\]
A.\[K\left( {1;1;1} \right).\]
B.\[K\left( {5; - 3;7} \right).\]
C.\[K\left( {6; - 2;8} \right).\]
D.\[K\left( {3; - 1;4} \right).\]
A.Đường tròn có tâm \[I\left( { - 1;4} \right)\] và bán kính \[R = 2.\]
B.Đường tròn có tâm \[I\left( { - 1;4} \right)\] và bán kính \[R = 4.\]
C.Đường tròn có tâm \[I\left( {1; - 4} \right)\] và bán kính \[R = 2.\]
D.Đường tròn có tâm \[I\left( {1; - 4} \right)\] và bán kính \[R = 4.\]
A.52.
B.54.
C.64.
D.68.
A.\[\frac{{{a^3}\sqrt 3 }}{{12}}.\]
B.\[\frac{{{a^3}\sqrt 3 }}{{24}}.\]
C.\[\frac{{{a^3}}}{{12}}.\]
D.\[\frac{{{a^3}}}{{24}}.\]
A.\[x = 2.\]
B.\[x = 4.\]
C.\[x = 6.\]
D.\[x = 8.\]
A.\[ - {e^{ - 1}}\]
B.\[20{e^2}\]
C.\[9e\]
D.\[3e\]
A.\[V = \frac{{128\pi }}{3}.\]
B.\[V = 128\pi .\]
C.\[V = \frac{{256\pi }}{3}.\]
D.\[V = 96\pi .\]
A.\[\frac{{28}}{3}.\]
B.28.
C.\[\frac{{14}}{3}.\]
D.14.
A.\[P = 1.\]
B.\[P = - 1.\]
C.\[P = 13.\]
D.\[P = 19.\]
A.\[a + b = \frac{{11}}{2}.\]
B.\[a + b = \frac{{19}}{3}.\]
C.\[a + b = 1.\]
D.\[a + b = 5.\]
A.\[\left\{ {\begin{array}{*{20}{l}}{x = 1 - 3t}\\{y = 0}\\{z = 1 + t}\end{array}} \right..\]
B.\[\left\{ {\begin{array}{*{20}{l}}{x = 1 - 3t}\\{y = 0}\\{z = 1 - t}\end{array}} \right..\]
C.\[\left\{ {\begin{array}{*{20}{l}}{x = 1 - 3t}\\{y = t}\\{z = 1 + t}\end{array}} \right..\]
D.\[\left\{ {\begin{array}{*{20}{l}}{x = 1 + 3t}\\{y = 0}\\{z = 1 + t}\end{array}} \right..\]
A.\[V = 6c{m^3}.\]
B.\[V = 4c{m^3}.\]
C.\[V = 3c{m^3}.\]
D.\[V = 7c{m^3}.\]
A.7.
B.5.
C.6.
D.8.
A.\[90^\circ.\]
B.\[45^\circ.\]
C.\[30^\circ.\]
D.\[60^\circ.\]
A.330.
B.315.
C.420.
D.405.
A.\[I = 2.\]
B.\[I = 6.\]
C.\[I = 10.\]
D.\[I = 4.\]
A.\[\Delta:\frac{{x - 2}}{2} = \frac{y}{1} = \frac{{z - 2}}{{ - 1}}.\]
B.\[\Delta:\frac{{x - 2}}{2} = \frac{y}{{ - 5}} = \frac{{z - 2}}{{ - 1}}.\]
C.\[\Delta:\frac{{x - 3}}{3} = \frac{{y - 1}}{1} = \frac{{z - 1}}{1}.\]
D.\[\Delta:\frac{{x - 3}}{2} = \frac{{y - 1}}{{ - 5}} = \frac{{z - 1}}{{ - 1}}.\]
A.\[\frac{{a\sqrt 2 }}{3}.\]
B.\[\frac{{a\sqrt 3 }}{2}.\]
C.\[\frac{{3a}}{2}.\]
D.\[\frac{{2a}}{3}.\]
A.\[\left( { - \frac{1}{2};\frac{7}{4};\frac{1}{4}} \right)\]
B.\[\left( {\frac{1}{3};\frac{7}{4};\frac{1}{4}} \right)\]
C.\[\left( { - \frac{1}{3};\frac{7}{4}; - \frac{1}{4}} \right)\]
D.\[\left( { - \frac{1}{2};\frac{7}{4}; - \frac{1}{4}} \right)\]
A.\[m \ge f\left( 0 \right).\]
B.\[m \ge f\left( 1 \right) - 1.\]
C.\[m >f\left( 0 \right).\]
D.\[m >f\left( 1 \right) - 1.\]
A.\[8 \le m \le 11.\]
B.\[3
C.\[m \le 3.\]
D.\[m \ge 12.\]
A.3.
B.1.
C.2.
D.4.
A.\[\frac{9}{{22}}\]
B.\[\frac{{13}}{{1024}}\]
C.\[\frac{2}{{19}}\]
D.\[\frac{{53}}{{512}}\]
A.\[\frac{{10}}{3}.\]
B.\[\frac{{15}}{7}.\]
C.\[\frac{{16}}{9}.\]
D.\[\frac{{18}}{7}.\]
A.4.
B.6.
C.7.
D.9.
A.12.
B.15.
C.18.
D.9.
A.\[\frac{{37}}{{12}}.\]
B.\[\frac{7}{{12}}.\]
C.\[\frac{{11}}{{12}}.\]
D.\[\frac{5}{{12}}.\]
A.6.
B.12.
C.5.
D.10.
A.26.
B.66.
C.42.
D.102.
A.\[3 + \sqrt {34} .\]
B.\[3 + \sqrt {10} .\]
C.\[6.\]
D.\[3.\]
A.\[\vec u = \left( {2;2; - 1} \right)\]
B.\[\vec u = \left( {1;7; - 1} \right)\]
C.\[\vec u = \left( {1;0;2} \right)\]
D.\[\vec u = \left( {3;4; - 4} \right)\]
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247