A. \(2041200\).
B. \(2041204\).
C. \(2041195\).
D. \(2041207\).
Ta có \(g'\left( x \right) = \left( {4{x^3} - 4x} \right)f'\left( {{x^4} - 2{x^2} + m} \right)\) ; \(g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}4{x^3} - 4x = 0{\rm{ }}\left( 1 \right)\\f'\left( {{x^4} - 2{x^2} + m} \right){\rm{ = 0 }}\left( 2 \right)\end{array} \right.\)
\(\left( 1 \right) \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 1\\x = 0\end{array} \right.\) .
\(\left( 2 \right) \Leftrightarrow \left[ \begin{array}{l}{x^4} - 2{x^2} + m = - 2\\{x^4} - 2{x^2} + m = - 1\\{x^4} - 2{x^2} + m = 3\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l} - m = {x^4} - 2{x^2} + 2 = {g_1}\left( x \right)\\ - m = {x^4} - 2{x^2} + 1 = {g_2}\left( x \right)\\ - m = {x^4} - 2{x^2} - 3 = {g_3}\left( x \right)\end{array} \right.\).
Ta có bảng biến thiên của các hàm số \({g_1}\left( x \right),{g_2}\left( x \right),{g_3}\left( x \right)\) như hình vẽ:
Từ bảng biến trên, ta dễ thấy: với \[ - m \le - 4 \Leftrightarrow m \ge 4\] hàm số \(g\left( x \right) = f\left( {{x^4} - 2{x^2} + m} \right)\) có đúng 3 điểm cực trị.
Do đó: \(S = \left\{ {4;5;6;7;...;2020} \right\}\)
Vậy tổng tất cả các phần tử của \(S\) là: \(4 + 5 + 6 + ... + 2020 = \frac{{\left( {4 + 2020} \right)2017}}{2} = 2041204\).
Chọn đáp án B
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247