Có bao nhiêu cặp số nguyên dương (x;y) thỏa mãn: 2y.^x = log2(1+2x/y)

Câu hỏi :

Có bao nhiêu cặp số nguyên dương\(\left( {x;y} \right)\)thỏa mãn:\(2y{.2^x} = {\log _2}\left( {1 + \frac{{2x}}{y}} \right) + 2y + 3x\)

A. 1.

B. 2.

C. 10.

D. 4.

* Đáp án

* Hướng dẫn giải

Ta có: \(2y{.2^x} = {\log _2}\left( {1 + \frac{{2x}}{y}} \right) + 2y + 3x\)

\(\begin{array}{l} \Leftrightarrow 2y{.2^x} = {\log _2}\left( {y + 2x} \right) - {\log _2}y + 2y + 3x\\ \Leftrightarrow y{.2^{x + 1}} + {\log _2}y + \left( {x + 1} \right) = 1 + {\log _2}\left( {y + 2x} \right) + 2y + 4x\\ \Leftrightarrow y{.2^{x + 1}} + {\log _2}\left( {y{{.2}^{x + 1}}} \right) = {\log _2}\left( {2y + 4x} \right) + \left( {2y + 4x} \right)\,\,\,\,\,\,\,(1)\end{array}\)

Ta thấy \(f\left( t \right) = {\log _2}t + t\) đồng biến trên \((0; + \infty )\) nên

\(\left( 1 \right) \Leftrightarrow y{.2^{x + 1}} = 2y + 4x \Leftrightarrow y{.2^x} = y + 2x \Rightarrow {2^x} = 1 + \frac{{2x}}{y}\) (2)

Do ynguyên dương nên \(1 + \frac{{2x}}{y} \le 1 + 2x\) (3)

Từ (2) và (3) ta có: \({2^x} \le 1 + 2x\) (4)

Xét \(f\left( x \right) = {2^x} - 2x - 1,\,\,x >0\)

\(f'\left( x \right) = {2^x}\ln 2 - 2 >0\,\,,\forall x \ge 3\)\( \Rightarrow f\left( x \right) \ge f\left( 3 \right) = {2^3} - 2.3 - 1 >0\,\,\forall x \ge 3\)

Suy ra \({2^x} - 2x - 1 >0\,\,\forall x \ge 3\)

Từ (4) và do x nguyên dương nên từ\({2^x} \le 1 + 2x \Rightarrow x \in \left\{ {1;2} \right\}\)

Thay \(x = 1\) vào (2) ta có \(y = 2\).

Thay \(x = 2\) vào (2) ta có \(y = \frac{4}{3}\)

Vậy có một cặp số nguyên dương \(\left( {x;y} \right)\)thỏa đề là: \(\left( {1;2} \right)\).

Nhận xét:

Kiên thức sử dụng:

1. Hàm sử dụng hàm đặc trưng để suy ra biểu thức quan hệ giữa x, y đơn giản hơn.

2. Sử dụng đánh giá bất đẳng thức cơ bản để thu hẹp miền x, y rồi thay vào tìm trực tiếp.

Chọn đáp án A

Copyright © 2021 HOCTAP247