Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và

Câu hỏi :

Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật, biết \[AB = 2a,\,\,AD = a,\,\,SA = 3a\] và \(SA\) vuông góc với mặt phẳng đáy. Gọi \(M\) là trung điểm cạnh \(CD\), điểm \(E \in SA\)sao cho \(SE = a\), cosin của góc giữa hai mặt phẳng\(\left( {SAC} \right)\) và \(\left( {BME} \right)\) bằng

A. \(\frac{3}{{2\sqrt {15} }}\).

B. \(\frac{1}{{\sqrt {15} }}\).

C. \(\frac{{\sqrt {14} }}{{\sqrt {15} }}\).

D. \(\frac{{\sqrt {14} }}{{3\sqrt {15} }}\).

* Đáp án

* Hướng dẫn giải

Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và  (ảnh 1)

Góc giữa hai mặt phẳng

Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và  (ảnh 2)Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và  (ảnh 3)là góc Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và  (ảnh 4). Khi đó \(\sin \varphi = \frac{{d\left( {A,\alpha } \right)}}{{d\left( {A,\Delta } \right)}}\)

Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và  (ảnh 5)

Gọi điểm Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và  (ảnh 6)là trọng tâm Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và  (ảnh 7), kéo dài tia Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và  (ảnh 8)cắtCho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và  (ảnh 9)tại Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và  (ảnh 10). Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và  (ảnh 11).

Khi đó góc giữa hai mặt phẳng\(\left( {SAC} \right)\) và \(\left( {BME} \right)\)là góc Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB = 2a , AD = a, SA = 3a và  (ảnh 12)có\(\sin \varphi = \frac{{d\left( {A,\left( {{\rm{BEF}}} \right)} \right)}}{{d\left( {A,EG} \right)}}\) .

Ta có \(d\left( {A,\left( {{\rm{BEF}}} \right)} \right) = \frac{{2a\sqrt 3 }}{3}\),\(d\left( {A,EG} \right) = \frac{{AE.AG}}{{\sqrt {A{E^2} + A{G^2}} }} = \frac{{a\sqrt {70} }}{7}\)

\(\sin \varphi = \frac{{d\left( {A,\left( {{\rm{BEF}}} \right)} \right)}}{{d\left( {A,EG} \right)}} = \frac{{\sqrt {14} }}{{\sqrt {15} }} \to {\rm{cos}}\varphi {\rm{ = }}\frac{1}{{\sqrt {15} }}\).

Nhận xét:Bản chất câu 49 khó khăn nhất là việc xác định góc giữa hai mặt phẳng. Tứ diện \(S.ABC\)là một tứ diện đặc biệt được tách từ hình chóp \(S.ABCD\)\(SD \bot \left( {ABCD} \right)\), mặt đáy là hình vuông. Đây là bài toán khá quen thuộc. Với những bài toán xác định góc phức tạp hơn các em học sinh có thể dùng phương pháp tọa độ.

Chọn đáp án B

Copyright © 2021 HOCTAP247