A.\(506\).
B.\(\frac{{1009}}{2}\).
C.\(\frac{{2019}}{2}\).
D.\[505\].
Ta có \(g\left( x \right) = 1 + 2020\int\limits_0^x {f\left( t \right){\rm{dt}}} \)\( \Rightarrow g'\left( x \right) = 2020f\left( x \right) = 2020\sqrt {g\left( x \right)} \)
\( \Rightarrow \frac{{g'\left( x \right)}}{{\sqrt {g\left( x \right)} }} = 2020\)\( \Rightarrow \int\limits_0^t {\frac{{g'\left( x \right)}}{{\sqrt {g\left( x \right)} }}{\rm{d}}x = 2020} \int\limits_0^t {{\rm{d}}x} \)\( \Rightarrow \left. {2\left( {\sqrt {g\left( x \right)} } \right)} \right|_0^t = \left. {2020x} \right|_0^t\)
\( \Rightarrow 2\left( {\sqrt {g\left( t \right)} - 1} \right) = 2020t\) (do \(g\left( 0 \right) = 1\))
\( \Rightarrow \sqrt {g\left( t \right)} = 1010t + 1\)
\( \Rightarrow \int\limits_0^1 {\sqrt {g\left( t \right)} {\rm{dt}}} = \left. {\left( {505{t^2} + t} \right)} \right|_0^1 = 506\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247