Cho hai số thực dương a>1;b>1 và biết phương trình a^(x^2).b^(x+4)=1 có nghiệm thực.

Câu hỏi :

Cho hai số thực dương \(a >1,\,\,b >1\) và biết phương trình \({a^{{x^2}}}{b^{x + 4}} = 1\) có nghiệm thực. Giá trị nhỏ nhất của biểu thức \(P = {\log _a}\left( {\frac{b}{{{a^3}}}} \right) + \frac{{16}}{{{{\log }_a}b}}\) nằm trong khoảng nào?

A. \[\left( {13;15} \right)\].

B. \[\left( { - 15, - 13} \right)\].

C. \[\left( {4;6} \right)\].

D. \[\left( { - 6; - 4} \right)\].

* Đáp án

* Hướng dẫn giải

Chọn đáp án A

Ta có: \(a >1,\,\,b >1\) nên \({\log _a}b >0\).

Xét: \({a^{{x^2}}}{b^{x + 4}} = 1 \Leftrightarrow {\log _a}\left( {{a^{{x^2}}}{b^{x + 4}}} \right) = 0 \Leftrightarrow {x^2} + x{\log _a}b + 4{\log _a}b = 0\).

Ta có \({a^{{x^2}}}{b^{x + 4}} = 1\) có nghiệm thực \( \Leftrightarrow \log _a^2b - 16{\log _a}b \ge 0 \Leftrightarrow \left[ \begin{array}{l}{\log _a}b \le 0\,\,\,\,\,\left( l \right)\\{\log _a}b \ge 16\,\,\,\left( n \right)\end{array} \right.\).

Ta có: \(P = {\log _a}\left( {\frac{b}{{{a^3}}}} \right) + \frac{{16}}{{{{\log }_a}b}} = - 3 + {\log _a}b + \frac{{16}}{{{{\log }_a}b}} = - 3 + \frac{{15}}{{16}}{\log _a}b + \left( {\frac{{{{\log }_a}b}}{{16}} + \frac{{16}}{{{{\log }_a}b}}} \right)\).

Áp dụng Cauchy cho hai số dương \(\frac{{{{\log }_a}b}}{{16}}\) và \(\frac{{16}}{{{{\log }_a}b}}\).

Ta có: \(\frac{{{{\log }_a}b}}{{16}} + \frac{{16}}{{{{\log }_a}b}} \ge 2\)

Vậy \(P \ge - 3 + \frac{{15}}{{16}}.16 + 2 \Leftrightarrow P \ge 14\).

Copyright © 2021 HOCTAP247