Cho tứ diện đều ABCD có cạnh bằng a. Gọi M,N lần lượt là trọng tâm các tam giác

Câu hỏi :

Cho tứ diện đều \(ABCD\) có cạnh bằng \[a\]. Gọi \(M,{\kern 1pt} {\kern 1pt} N\) lần lượt là trọng tâm các tam giác \(ABD,{\kern 1pt} {\kern 1pt} ABC\) và \(E\) là điểm đối xứng với \(B\) qua \(D\). Mặt \(\left( {MNE} \right)\) chia khối tứ diện \(ABCD\) thành hai khối đa diện trong đó khối đa diện chứa đỉnh \(A\) có thể tích \(V\). Tính \(V\).

A. \(V = \frac{{9\sqrt 2 {a^3}}}{{320}}\).

B. \(V = \frac{{3\sqrt 2 {a^3}}}{{320}}\).

C. \(V = \frac{{\sqrt 2 {a^3}}}{{96}}\).

D. \(V = \frac{{3\sqrt 2 {a^3}}}{{80}}\).

* Đáp án

* Hướng dẫn giải

Chọn đáp án A

  Cho tứ diện đều ABCD có cạnh bằng a. Gọi M,N lần lượt là trọng tâm các tam giác  (ảnh 1)

Gọi \[H,{\rm{ }}K\] lần lượt là trung điểm của \[BD,{\rm{ }}BC\] và \[I = EM \cap AB.{\rm{ }}\]Áp dụng định lí Menelaus cho tam giác \[AHB\] ta được \[\frac{{AM}}{{MH}}.\frac{{HE}}{{EB}}.\frac{{BI}}{{IA}} = 1 \Leftrightarrow 2.\frac{3}{4}.\frac{{BI}}{{IA}} = 1 \Leftrightarrow \frac{{BI}}{{IA}} = \frac{2}{3} \Leftrightarrow AI = \frac{3}{5}AB\]

\[\frac{{AI}}{{AB}} = \frac{3}{5} \ne \frac{{AN}}{{AK}} = \frac{2}{3} \Rightarrow \]Hai đường thẳng \[IN\] và \[BC\] cắt nhau, gọi giao điểm là \[F\].

Gọi \[P = EM \cap AD.{\rm{ }}\]Vì \[MN{\rm{//}}CD\] nên áp dụng định lí về giao tuyến của ba mặt phẳng

Ta có \[PQ{\rm{//}}EF{\rm{//}}CD.\]

Áp dụng định lí Menelaus cho tam giác \[ADB\] ta được

\[\frac{{AP}}{{PD}}.\frac{{DE}}{{EB}}.\frac{{BI}}{{IA}} = 1 \Leftrightarrow \frac{{AP}}{{PD}}.\frac{1}{2}.\frac{2}{3} = 1 \Leftrightarrow \frac{{AP}}{{PD}} = 3.\]

Có\[ABCD\] là tứ diện đều cạnh bằng \[a \Rightarrow {V_{ABCD}} = \frac{{{a^3}\sqrt 2 }}{{12}}\]

\[\frac{{{V_{APQI}}}}{{{V_{ABCD}}}} = \frac{{AP}}{{AD}}.\frac{{AQ}}{{AC}}.\frac{{AI}}{{AB}} = \frac{3}{4}.\frac{3}{4}.\frac{3}{5} = \frac{{27}}{{80}} \Rightarrow {V_{APQI}} = \frac{{27}}{{80}}{V_{ABCD}} = \frac{{27}}{{80}}.\frac{{{a^3}\sqrt 2 }}{{12}}.\]

Vậy \({V_{APQI}} = \frac{{9\sqrt 2 {a^3}}}{{320}}\).

Copyright © 2021 HOCTAP247