A. \(a\sqrt 2 \).
B. \(a\).
C. \(2a\sqrt 2 \).
D. \(\frac{{a\sqrt 2 }}{2}\).
Vì \(AA'//\left( {BB'C'C} \right)\) nên \(d\left( {AA';\left( {BCC'B'} \right)} \right) = d\left( {A;\left( {BCC'B'} \right)} \right)\).
Trong \(\left( {ABC} \right)\) kẻ \(AH \bot BC,\) \(H\) là trung điểm của \(BC\).
Mà\(\left( {BCC'B'} \right) \bot \left( {ABC} \right);\,\left( {BCC'B'} \right) \cap \left( {ABC} \right) = BC\) nên \(AH \bot \left( {BCC'B'} \right)\).
Suy ra \(d\left( {AA';\left( {BCC'B'} \right)} \right) = d\left( {A;\left( {BCC'B'} \right)} \right) = AH = \frac{{BC}}{2} = \frac{{2a\sqrt 2 }}{2} = a\sqrt 2 \).
Chọn đáp án A
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247