A. \[\frac{{7\pi }}{{60}}\].
B. \[\frac{{7\pi }}{{50}}\].
C. \[\frac{\pi }{{10}}\].
D. \[\frac{{7\pi }}{{30}}\].
Ta có
\[\begin{array}{l}f'\left( x \right) = \sin \left( {2x} \right).co{s^2}\left( {4x} \right) \Rightarrow \int {f'\left( x \right)dx = \int {\sin \left( {2x} \right).co{s^2}\left( {4x} \right)dx} } \\ \Leftrightarrow f\left( x \right) = \int {\sin \left( {2x} \right).\frac{{1 + \cos \left( {8x} \right)}}{2}} dx\\ \Leftrightarrow f\left( x \right) = \frac{{ - 1}}{4}\cos \left( {2x} \right) + \frac{1}{4}\int {\left( {\sin 10x - \sin 6x} \right)} dx\\ \Leftrightarrow f(x) = \frac{{ - 1}}{4}\cos 2x - \frac{1}{{40}}\cos 10x + \frac{1}{{24}}\cos 6x + C\end{array}\]
\[f(0) = 0 \Leftrightarrow c = \frac{7}{{30}}\]
Vậy \[f(x) = \frac{{ - 1}}{4}\cos \left( {2x} \right) - \frac{1}{{40}}\cos \left( {10x} \right) + \frac{1}{{24}}\cos \left( {6x} \right) + \frac{7}{{30}}\]
Do đó:
\[\int\limits_0^{\frac{\pi }{2}} {f(x)dx} = \left. {\left( { - \frac{1}{8}\sin 2x - \frac{1}{{400}}\sin 10x + \frac{1}{{144}}\sin 6x + \frac{7}{{30}}x} \right)} \right|_0^{\frac{\pi }{2}} = \frac{{7\pi }}{{60}}\]
Chọn đáp án A
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247