A.\(\left[ \begin{array}{l}m = 10\\m = - 2\end{array} \right.\).
B. \(m = 10\).
C. \(m = - 2\).
D. \(m \in \left( { - 2;10} \right)\).
Hoành độ giao điểm của đường thẳng \(\left( d \right)\) và \(\left( C \right)\) là nghiệm phương trình:
\(\frac{{2x - 2}}{{x + 1}} = 2x + m\)\( \Leftrightarrow f\left( x \right) = 2{x^2} + mx + m + 2 = 0,\,x \ne - 1\)\(\left( * \right)\)
Để đường thẳng \(\left( d \right):y = 2x + m\) cắt \(\left( C \right)\) tại hai điểm phân biệt thì \(\left( * \right)\) có hai nghiệm phân biệt khác \( - 1\)
\( \Leftrightarrow \left\{ \begin{array}{l}\Delta >0\\f\left( { - 1} \right) \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 8m - 16 >0\\4 \ne 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m >4 + 4\sqrt 2 \\m < 4 - 4\sqrt 2 \end{array} \right.\).
Giả sử \(A\left( {{x_1};2{x_1} + m} \right),\,\)\(B\left( {{x_1};2{x_1} + m} \right)\) với \({x_1} + {x_2} = \frac{{ - m}}{2};{x_1}.{x_2} = \frac{{m + 2}}{2}\). Vì \(AB = \sqrt 5 \)\( \Leftrightarrow \sqrt {5{{\left( {{x_1} - {x_2}} \right)}^2}} = \sqrt 5 \)\( \Leftrightarrow {\left( {{x_1} - {x_2}} \right)^2} = 1\)\( \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} = 1\)
\( \Leftrightarrow {\frac{m}{4}^2} - 2\left( {m + 2} \right) = 1\)\( \Leftrightarrow {m^2} - 8m - 20 = 0 \Leftrightarrow \left[ \begin{array}{l}m = 10\\m = - 2\end{array} \right.\).
Chọn đáp án A
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247