A. \(\frac{7}{{18}}\).
B. \(\frac{{11}}{{18}}\).
C. \(\frac{{13}}{{18}}\).
D. \(\frac{1}{{18}}\).
Gọi \(P = EN \cap CD\)và \(Q = EM \cap AD\).
Suy ra \[P,{\rm{ }}Q\] lần lượt là trọng tâm của \[\Delta BCE\]và \[\Delta ABE\].
Gọi \[S\] là diện tích tam giác \[BCD\], suy ra \({S_{\Delta CDE}} = {S_{\Delta BNE}} = S.\)
Ta có \[{S_{\Delta PDE}} = \frac{1}{3}.{S_{\Delta CDE}} = \frac{S}{3}.\]
Gọi \[h\] là chiều cao của tứ diện \[ABCD\], suy ra
\[d\left[ {M,\left( {BCD} \right)} \right] = \frac{h}{2};{\rm{ }}\,d\left[ {Q,\left( {BCD} \right)} \right] = \frac{h}{3}.\]
Khi đó \[{V_{M.BNE}} = \frac{1}{3}{S_{\Delta BNE}}.d\left[ {M,\left( {BCD} \right)} \right] = \frac{{S.h}}{6};\]\[{V_{Q.PDE}} = \frac{1}{3}{S_{\Delta PDE}}.d\left[ {Q,\left( {BCD} \right)} \right] = \frac{{S.h}}{{27}}.\]
Suy ra \[{V_{PQD.NMB}} = {V_{M.BNE}} - {V_{Q.PDE}} = \frac{{S.h}}{6} - \frac{{S.h}}{{27}} = \frac{{7S.h}}{{54}} = \frac{7}{{18}}.\frac{{S.h}}{3} = \frac{7}{{18}}.{V_{ABCD}}\]
\[ \Rightarrow V' = V - \frac{7}{{18}}.{V_{}} = \frac{{11}}{{18}}V \Rightarrow \frac{{V'}}{V} = \frac{{11}}{{18}}\].
Vậy \(\frac{{V'}}{V} = \frac{{11}}{{18}}\).
Chọn đáp án B
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247