Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=x^3

Câu hỏi :

Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = {x^3} - 3{x^2} - 9x + 35\) trên đoạn \(\left[ { - 4;4} \right]\) . Khi đó \(M + m\) bằng bao nhiêu?

A. -1.

B.11.

C.55.

D.48.

* Đáp án

* Hướng dẫn giải

Chọn đáp án A

Xét hàm số \(y = {x^3} - 3{x^2} - 9x + 35\) liên tục trên đoạn \(\left[ { - 4;4} \right]\), ta có:\(y' = 3{x^2} - 6x - 9\).

\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1 \in \left[ { - 4;4} \right]\\x = 3 \in \left[ { - 4;4} \right]\end{array} \right.\) .

Xét: \(y( - 4) = - 41;\,\,y( - 1) = 40;\,\,y(3) = 8;\,\,y(4) = 15\). Vậy \(M + m = 40 + ( - 41) = - 1\).

Copyright © 2021 HOCTAP247