A.\(2017\).
B.\(2018\).
C.\(2019\).
D.\(2020\).
Chọn đáp án C
\[\begin{array}{l}{4^{x + 1}} + {10.2^x} - 6 < 0 \Leftrightarrow 4.{\left( {{2^x}} \right)^2} + {10.2^x} - 6 < 0 \Leftrightarrow \left( {{{4.2}^x} - 2} \right)\left( {{2^x} + 3} \right) < 0\\ \Leftrightarrow \left\{ \begin{array}{l}{2^x} < \frac{1}{2}\\{2^x} >- 3\end{array} \right. \Leftrightarrow {2^x} < {2^{ - 1}} \Leftrightarrow x < - 1\end{array}\]
Vì \(x\) nguyên và thuộc \(\left[ { - 2020\,,\,2020} \right]\) nên \(x \in \left\{ { - 2020\,;\, - 2019\,;\,...\,;\, - 3\,;\, - 2} \right\}\)
Vậy bất phương trình đã cho có \(2019\)nghiệm nguyên thuộc \(\left[ { - 2020\,,\,2020} \right]\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247