Diện tích S của hình phẳng giới hạn bởi các đường y= 2x^2 +3x +1 , y=x^3 +1

Câu hỏi :

Diện tích S của hình phẳng giới hạn bởi các đường \(y = 2{x^2} + 3x + 1\,,\,y = {x^3} + 1\,\) được tính bởi công thức nào dưới đây ?

A. \[S = \pi \int\limits_{ - 1}^3 {{{\left( {{x^3} - 2{x^2} - 3x} \right)}^2}dx} \].

B. \(S = \int\limits_{ - 1}^3 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} \).

C.\(S = \int\limits_{ - 1}^0 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} + \int\limits_0^3 {\left( {2{x^2} + 3x - {x^3}} \right)dx} \).

D. \(S = \int\limits_{ - 1}^0 {\left( {2{x^2} + 3x - {x^3}} \right)dx} + \int\limits_0^3 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} \).

* Đáp án

* Hướng dẫn giải

Chọn đáp án C

Phương trình hoành độ giao điểm của hai đồ thị \(y = 2{x^2} + 3x + 1\,,\,y = {x^3} + 1\,\)là \(2{x^2} + 3x + 1\, = {x^3} + 1\, \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 3\\x = - 1\end{array} \right.\)

Ta có: \({x^3} - 2{x^2} - 3x \ge 0 \Leftrightarrow \left[ \begin{array}{l}x \ge 3\\ - 1 \le x \le 0\end{array} \right.\)

Diện tích S của hình phẳng là:

\(S = \int\limits_{ - 1}^3 {\left| {\left( {{x^3} + 1} \right) - \left( {2{x^2} + 3x + 1} \right)} \right|dx} = \int\limits_{ - 1}^3 {\left| {{x^3} - 2{x^2} - 3x} \right|dx} \)\( = \int\limits_{ - 1}^0 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} + \int\limits_0^3 {\left( {2{x^2} + 3x - {x^3}} \right)dx} \)

Copyright © 2021 HOCTAP247