Một đoàn tàu có 5 toa chở khách với mỗi toa còn ít nhất 5 chỗ trống. Trên sân ga có 5 hành khách chuẩn bị lên tàu. Tính xác suất để có ít nhất 1 toa có nhiều hơn 2 khách lên

Câu hỏi :

A. \(\frac{{46}}{{125}}\).

A. \(\frac{{46}}{{125}}\).

B. \(\frac{{121}}{{625}}\).

C. \(\frac{{36}}{{125}}\).

D. \(\frac{{181}}{{625}}\).

* Đáp án

* Hướng dẫn giải

Chọn đáp án D

Số phần tử không gian mẫu: \(n(\Omega ) = {5^5} = 3125\).

Gọi A là biến cố: “Có ít nhất 1 toa có nhiều hơn 2 khách lên”.

Có 4 trường hợp:

TH1:Một toa có 3 khách lên, 1 toa có 2 khách lên, 3 toa còn lại không có khách lên

- Chọn 1 toa có 3 khách lên: có \(C_5^1\) cách;

- Chọn 3 khách lên toa vừa chọn: có \(C_5^3\) cách;

- Chọn 1 toa cho 2 khách còn lại: có \(C_4^1\) cách;

Trường hợp này có: \(C_5^1.C_5^3.C_4^1 = 200\)cách.

TH2:1 toa có 3 khách lên, 2 toa có 1 khách, 2 toa còn lại không có khách lên

- Chọn 1 toa có 3 khách lên: có \(C_5^1\) cách;

- Chọn 3 khách lên toa vừa chọn: có \(C_5^3\) cách;

- Chọn 2 toa cho 2 khách còn lại: có \(A_4^2\) cách;

Trường hợp này có: \(C_5^1.C_5^3.A_4^2 = 600\)cách.

TH3:1 toa có 4 khách lên, 1 toa có 1 khách, 3 toa còn lại không có khách lên

- Chọn 1 toa có 4 khách lên: có \(C_5^1\) cách;

- Chọn 4 khách lên toa vừa chọn: có \(C_5^4\) cách;

- Chọn 1 toa cho 1 khách còn lại: có \(C_4^1\) cách;

Trường hợp này có: \(C_5^1.C_5^4.C_4^1 = 100\)cách.

TH4:1 toa có 5 khách lên, 4 toa còn lại không có khách lên

Trường hợp này có: \(C_5^1 = 5\)cách.

Số phần tử của biến cố A: \(n(A) = 200 + 600 + 100 + 5 = 905\).

Vậy xác suất của biến cố A là: \(P(A) = \frac{{905}}{{3125}} = \frac{{181}}{{625}}\).

Copyright © 2021 HOCTAP247