Cho hình chóp S.ABCD có đáy là tam giác đều cạnh 4a, SA vuông góc với mặt phẳng

Câu hỏi :

Cho hình chóp \(S.ABC\) có đáy là tam giác đều cạnh \(4a\), \(SA\) vuông góc với mặt phẳng đáy và \(SA = a\sqrt 3 \) (minh họa như hình bên).

A. \[\frac{{3a}}{2}\].

B. \[\frac{{2a}}{3}\].

C. \[\frac{{a\sqrt {15} }}{5}\].

D. \[\frac{{a\sqrt 6 }}{2}\].

* Đáp án

* Hướng dẫn giải

Chọn đáp án D

Cho hình chóp S.ABCD có đáy là tam giác đều cạnh 4a, SA vuông góc với mặt phẳng (ảnh 2)

Gọi \(K\) là trung điểm của \(BC\).

Suy ra: \[d\left( {SI,AB} \right) = d\left( {AB,\left( {SIK} \right)} \right) = d\left( {A,\left( {SIK} \right)} \right)\].

Trong mặt phẳng \(\left( {ABC} \right)\) kẻ \(AD\) vuông góc với \(IK\).

Trong mặt phẳng \(\left( {SAD} \right)\) kẻ \(AH\) vuông góc với \(SD\).

Ta có \[IK \bot \left( {SAD} \right)\] vì \[IK \bot AD\] và \[IK \bot SA\].

Suy ra \[IK \bot AH\].

Vậy \[\left\{ \begin{array}{l}AH \bot SD\\AH \bot IK\end{array} \right. \Rightarrow AH \bot \left( {SIK} \right)\]. Vậy \(AH = d\left( {A,\left( {SIK} \right)} \right)\).

Gọi \(M\) là trung điểm của \(IK\), suy ra \[AD = CM = a\sqrt 3 \] (tam giác \(CIK\) đều cạnh \(2a\)).

Ta có \[\frac{1}{{A{H^2}}} = \frac{1}{{A{S^2}}} + \frac{1}{{A{D^2}}} = \frac{1}{{3{a^2}}} + \frac{1}{{3{a^2}}} \Rightarrow AH = \frac{{a\sqrt 6 }}{2}\].

Suy ra \[d\left( {SI,AB} \right) = \frac{{a\sqrt 6 }}{2}\].

Copyright © 2021 HOCTAP247