Cho hai số thực dương a,b lớn hơn 1 và biết phương trình a^(x^2) .b^(x+2)= 1

Câu hỏi :

Cho hai số thực dương \[a,b\] lớn hơn \(1\) và biết phương trình \[{a^{{x^2}}}.{b^{x + 2}} = 1\] có nghiệm thực. Biết giá trị nhỏ nhất của biểu thức \(P = {\log _a}\left( {ab} \right) + \frac{4}{{{{\log }_a}b}}\) có dạng \(\frac{m}{n}\)với \(m,n\) là số tự nhiên và \(\frac{m}{n}\) là phân số tối giản. Khi đó \(m + 2n\) bằng

A.\[34\].

B.\[21\].

C.\[23\].

D.\[10\].

* Đáp án

* Hướng dẫn giải

Chọn đáp án C

Phương trình tương đương với \({x^2} + \left( {x + 2} \right){\log _a}b = 0 \Leftrightarrow {x^2} + x{\log _a}b + 2{\log _a}b = 0\).

Điều kiện để phương trình có nghiệm là: \(\Delta = {\left( {{{\log }_a}b} \right)^2} - 8{\log _a}b \ge 0\)\( \Leftrightarrow {\log _a}b \ge 8\)\(\left( {{{\log }_a}b >0} \right)\).

Khi đó \(P = {\log _a}b + \frac{4}{{{{\log }_a}b}} + 1\)\( = f\left( t \right) = t + \frac{4}{t} + 1\)\( \ge \mathop {\min }\limits_{\left[ {8; + \infty } \right)} {\mkern 1mu} f\left( t \right) = f\left( 8 \right) = \frac{{19}}{2} = \frac{m}{n}\).

Vậy \(m + 2n = 23\).

Copyright © 2021 HOCTAP247