Cho phương trình log5(2x+5y+1) - log5(21) = 1- 1/(log

Câu hỏi :

Cho phương trình\({\log _5}\left( {2x + 5y + 1} \right) - {\log _5}21 = 1 - \frac{1}{{{{\log }_{{2^{\left| x \right|}} + y + {x^2} + x}}5}}\). Hỏi có bao nhiêu cặp số nguyên dương \(\left( {x\,;\,y} \right)\) thỏa phương trình trên.

A. 2.

B. 3.

C. 4.

D. 1.

* Đáp án

* Hướng dẫn giải

Chọn đáp án D

\({\log _5}\left( {2x + 5y + 1} \right) - {\log _5}21 = 1 - \frac{1}{{{{\log }_{{2^{\left| x \right|}} + y + {x^2} + x}}5}}\)

\( \Leftrightarrow {\log _5}\left( {2x + 5y + 1} \right) - {\log _5}21 = 1 - {\log _5}\left( {_{{2^{\left| x \right|}} + y + {x^2} + x}} \right)\)

\( \Leftrightarrow {\log _5}\left( {2x + 5y + 1} \right) + {\log _5}\left( {{2^{\left| x \right|}} + y + {x^2} + x} \right) = {\log _5}21 + 1\)

\( \Leftrightarrow {\log _5}\left( {2x + 5y + 1} \right)\left( {{2^{\left| x \right|}} + y + {x^2} + x} \right) = {\log _5}105\)

\( \Leftrightarrow \left( {2x + 5y + 1} \right)\left( {{2^{\left| x \right|}} + y + {x^2} + x} \right) = 105\) \(\left( * \right)\)

Do 105 lẻ \( \Rightarrow \)\(2x + 5y + 1\) lẻ \( \Rightarrow \)\(5y\) chẵn \( \Rightarrow \)\(y\) chẵn

Mặt khác \({2^{\left| x \right|}} + y + {x^2} + x = {2^{\left| x \right|}} + y + x\left( {x + 1} \right)\) lẻ

Mà \(y\) và \(x\left( {x + 1} \right)\) chẵn nên \({2^{\left| x \right|}}\) lẻ \( \Rightarrow \)\({2^{\left| x \right|}} = 1\)\( \Rightarrow \)\(x = 0\)

Thế \(x = 0\) vào \(\left( * \right)\) ta được \(\left( {5y + 1} \right)\left( {y + 1} \right) = 105 \Leftrightarrow 5{y^2} + 6y - 104 = 0 \Leftrightarrow \left[ \begin{array}{l}y = 4\\y = - \frac{{26}}{5}\end{array} \right.\)

Do \(x,\,y\) nguyên dương nên \(\left( {x\,;\,y} \right) = \left( {0\,;\,4} \right)\)

Vậy có một cặp số \(\left( {x\,;\,y} \right)\) thỏa yêu cầu đề bài

Copyright © 2021 HOCTAP247