Trong không gian Oxyz, cho mặt cầu(S) :x^2+ y^2+z^2 - 6x + 4y - 12z + 41 = 0

Câu hỏi :

Trong không gian \[Oxyz\], cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 6x + 4y - 12z + 41 = 0\). Từ điểm \(M\left( {2;\, - 1;\,3} \right)\) kẻ ba tiếp tuyến phân biệt \(MA,\,MB,\,MC\) đến mặt cầu (\(A,\,B,\,C\) là các tiếp điểm). Khi đó phương trình mặt phẳng \[\left( {ABC} \right)\] có dạng \[x + by + cz + d = 0\]. Giá trị \[b + c + d\] bằng

A.\[ - 12\].

B.\[ - 14\].

C.\[ - 13\].

D.\[11\].

* Đáp án

* Hướng dẫn giải

Lời giải

Ta có: \(\left( S \right):{x^2} + {y^2} + {z^2} - 6x + 4y - 12z + 41 = 0\)

\( \Leftrightarrow \,\left( S \right):{\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 6} \right)^2} = 8\).

Suy ra mặt cầu \(\left( S \right)\) có tâm \(I\left( {3;\, - 2;\,6} \right)\) và bán kính \(R = 2\sqrt 2 \).

Ta có \(\overrightarrow {MI} = \left( {1;\, - 1;3} \right)\) và \(MI = \sqrt {1 + 1 + 9} = \sqrt {11} \).

Tam giác \(MAI\) vuông tại \(A\). Ta có: \(M{A^2} = M{I^2} - {R^2} = 11 - 8 = 3\).

Do tính chất tiếp tuyến nên \[MA = MB = MC\].

Vì thế ba điểm \(A,\,B,\,C\) cũng thuộc mặt cầu \(\left( {S'} \right)\) tâm \[M\] bán kính \(MA = \sqrt 3 \).

Phương trình mặt cầu \(\,\left( {S'} \right):{\left( {x - 2} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 3} \right)^2} = 3\)

\(\, \Leftrightarrow \,\left( {S'} \right):{x^2} + {y^2} + {z^2} - 4x + 2y - 6z + 11 = 0\).

Do đó tọa độ \(A,\,B,\,C\) thỏa: \(\left\{ \begin{array}{l}{x^2} + {y^2} + {z^2} - 4x + 2y - 6z + 11 = 0\,\,\,\,\,\,\,\,\,(1)\\{x^2} + {y^2} + {z^2} - 6x + 4y - 12z + 41 = 0\,\,\,\,\,\,(2)\end{array} \right.\)

Lấy (1) trừ (2) theo từng vế. Ta được: \[2x - 2y + 6z - 30 = 0\] hay \[x - y + 3z - 15 = 0\]

Vậy \[(ABC):x - y + 3z - 15 = 0\] mà \[(ABC):x + by + cz + d = 0\].

Khi đó: \[\left\{ \begin{array}{l}b = - 1\\c = 3\\d = - 15\end{array} \right.\,\,\,\, \Rightarrow b + c + d = - 1 + 3 - 15 = - 13\].

Kết luận: \[b + c + d = - 13\].

Chọn đáp án C

Copyright © 2021 HOCTAP247