Tìm giá trị nhỏ nhất của hàm số y=x^2 + 16/x trên đoạn [1;4]

Câu hỏi :

Tìm giá trị nhỏ nhất của hàm số \[y = {x^2} + \frac{{16}}{x}\] trên đoạn \[\left[ {1;4} \right].\]

A.\[\mathop {\min }\limits_{\left[ {1;4} \right]} {\mkern 1mu} y = 17.\]

B.\[\mathop {\min }\limits_{\left[ {1;4} \right]} {\mkern 1mu} y = 12.\]

C.\[\mathop {\min }\limits_{\left[ {1;4} \right]} {\mkern 1mu} y = 20.\]

D.\[\mathop {\min }\limits_{\left[ {1;4} \right]} {\mkern 1mu} y = 10.\]

* Đáp án

* Hướng dẫn giải

Chọn đáp án B

Hàm số đã cho đã xác định và liên tục trên \(\left[ {1;4} \right]\).

Ta có \(\left\{ \begin{array}{l}x \in \left( {1;4} \right)\\y' = 2x - \frac{{16}}{{{x^2}}} = 0\end{array} \right. \Leftrightarrow x = 2\).

Tính \(y\left( 1 \right) = 17;{\rm{ }}y\left( 4 \right) = 20;{\rm{ }}y\left( 2 \right) = 12 \Rightarrow \mathop {\min }\limits_{\left[ {1;4} \right]} y = 12\)

Copyright © 2021 HOCTAP247