Trong không gian Oxyz,cho hai vectơ u(2;-3;4) và v(m+4; -2m^2-1; 5m+2)

Câu hỏi :

Trong không gian Oxyz,cho hai vectơ \[\vec u = \left( {2; - 3;4} \right)\] và \[\vec v = \left( {m + 4; - 2{m^2} - 1;5m + 2} \right),\] với m là tham số thực. Tìm tất cả các giá trị thực của m để vectơ \[\vec u\] cùng phương với vectơ \[\vec v.\]

A.\[m = 2.\]

B.\[m = - \frac{5}{4}.\]

C.\[m = 3.\]

D.\[m = - 2.\]

* Đáp án

* Hướng dẫn giải

Chọn đáp án A

Ta có \(\overrightarrow u ,\overrightarrow v \) cùng phương \( \Leftrightarrow \frac{{m + 4}}{2} = \frac{{ - 2{m^2} - 1}}{{ - 3}} = \frac{{5m + 2}}{4}\)

\( \Leftrightarrow \left\{ \begin{array}{l}\frac{{m + 4}}{2} = \frac{{5m + 2}}{4}\\\frac{{m + 4}}{2} = \frac{{2{m^2} + 1}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4m + 16 = 10m + 4\\3m + 12 = 4{m^2} + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}6m = 12\\4{m^2} - 3m - 10 = 0\end{array} \right. \Leftrightarrow m = 2\).

Copyright © 2021 HOCTAP247