Cho hàm số y=ln(x^2+4) + (10-m^2)x với m là tham số thực

Câu hỏi :

Cho hàm số \[y = \ln \left( {{x^2} + 4} \right) + \left( {10 - {m^2}} \right)x\], với m là tham số thực. Có bao nhiêu giá trị nguyên của m để hàm số đồng biến trên khoảng \[\left( { - \infty ; + \infty } \right)\]?

A.5.

B.9.

C.7.

D.8.

* Đáp án

* Hướng dẫn giải

Chọn đáp án C

Ta có \(y' = \frac{{2x}}{{{x^2} + 4}} + 10 - {m^2} \ge 0,{\rm{ }}\forall x \in \mathbb{R} \Leftrightarrow {m^2} \le 10 + \frac{{2x}}{{{x^2} + 4}} = f\left( x \right),{\rm{ }}\forall x \in \mathbb{R}\).

Lưu ý

\({x^2} + 4 \ge - 4x \Rightarrow \frac{{2x}}{{{x^2} + 4}} \ge - \frac{1}{2} \Rightarrow {m^2} \le 10 - \frac{1}{2} = \frac{{19}}{2} \Rightarrow - \sqrt {\frac{{19}}{2}} \le m \le \sqrt {\frac{{19}}{2}} \).

Copyright © 2021 HOCTAP247