Cho số z thỏa mãn trị tuyệt đối của (z+8-3i)= Trị tuyệt đối của (z-i)

Câu hỏi :

Cho số z thỏa mãn \[\left| {z + 8 - 3i} \right| = \left| {z - i} \right|\] và \[\left| {z + 8 - 7i} \right| = \left| {z + 4 - i} \right|\]. Môđun của z bằng

A.5

B.\[4\sqrt 2 .\]

C.\[2\sqrt 5 .\]

D.\[3\sqrt 5 .\]

* Đáp án

* Hướng dẫn giải

Chọn đáp án D

Giả sử \[z = x + yi\left( {x,y \in \mathbb{R}} \right)\]

Ta có \(\left| {z + 8 - 3i} \right| = \left| {z - i} \right| \Leftrightarrow \left| {\left( {x + 8} \right) + \left( {y - 3} \right)i} \right| = \left| {x + \left( {y - 1} \right)i} \right|\)

\( \Leftrightarrow {\left( {x - 8} \right)^2} + {\left( {y - 3} \right)^2} = {x^2} + {\left( {y - 1} \right)^2} \Leftrightarrow 16x - 4y + 72 = 0 \Leftrightarrow 4x - y + 18 = 0\).

Lại có \(\left| {z + 8 - 7i} \right| = \left| {z + 4 - i} \right| \Leftrightarrow \left| {\left( {x + 8} \right) + \left( {y - 7} \right)i} \right| = \left| {\left( {x + 4} \right) + \left( {y - 1} \right)i} \right|\)

\( \Leftrightarrow {\left( {x + 8} \right)^2} + {\left( {y - 7} \right)^2} = {\left( {x - 4} \right)^2} + {\left( {y - 1} \right)^2} \Leftrightarrow 8x - 12y + 96 = 0 \Leftrightarrow 2x - 3y + 24 = 0\)

Giải hệ \[\left\{ \begin{array}{l}4x - y + 18 = 0\\2x - 3y + 24 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - 3\\y = 6\end{array} \right. \Rightarrow \left| z \right| = \sqrt {{x^2} + {y^2}} = 3\sqrt 5 \].

Copyright © 2021 HOCTAP247