Biết rằng phương trình m^2.x^2.(mx+3)=(x^2+2). căn bậc hai của (x^2+1)

Câu hỏi :

Biết rằng phương trình \[{m^2}{x^2}\left( {mx + 3} \right) = \left( {{x^2} + 2} \right)\sqrt {{x^2} + 1} - 4mx - 2\] (m là tham số thực) có nghiệm thuộc đoạn \[\left[ {1;2} \right]\] khi và chỉ khi \[m \in \left[ {a;b} \right]\] với \[a,{\rm{ }}b \in \mathbb{R}.\] Mệnh đề nào dưới đây là đúng?

A.\[a + b < 1.\]

B.\[a + b >2.\]

C.\[1 < a + b < \frac{3}{2}.\]

D.\[\frac{3}{2} < a + b < 2.\]

* Đáp án

* Hướng dẫn giải

Chọn đáp án C

Ta có \({\left( {mx + 1} \right)^2} + mx + 1 = {\left( {\sqrt {{x^2} + 1} } \right)^3} + \sqrt {{x^2} + 1} \Leftrightarrow f\left( {mx + 1} \right) = f\left( {\sqrt {{x^2} + 1} } \right)\)

\( \Leftrightarrow mx + 1 = \sqrt {{x^2} + 1} \Leftrightarrow mx = \sqrt {{x^2} + 1} - 1 \Leftrightarrow mx = \frac{{{x^2}}}{{\sqrt {{x^2} + 1} + 1}} \Rightarrow m = \frac{x}{{\sqrt {{x^2} + 1} + 1}}\)

\( \Rightarrow g'\left( x \right) = \frac{{\sqrt {{x^2} + 1} + 1 - x.\frac{x}{{\sqrt {{x^2} + 1} }}}}{{{{\left( {\sqrt {{x^2} + 1} + 1} \right)}^2}}} = \frac{{\sqrt {{x^2} + 1} + 1}}{{{{\left( {\sqrt {{x^2} + 1} + 1} \right)}^2}\sqrt {{x^2} + 1} }} >0,{\rm{ }}\forall x \in \left( {1;2} \right)\)

Từ đó \(g\left( 1 \right) \le m \le g\left( 2 \right) \Leftrightarrow \sqrt 2 - 1 \le m \le \frac{{\sqrt 5 - 1}}{2} \Rightarrow a = \sqrt 2 - 1;{\rm{ }}b = \frac{{\sqrt 5 - 1}}{2}\).

Copyright © 2021 HOCTAP247