A.\[a + b < 1.\]
B.\[a + b >2.\]
C.\[1 < a + b < \frac{3}{2}.\]
D.\[\frac{3}{2} < a + b < 2.\]
Chọn đáp án C
Ta có \({\left( {mx + 1} \right)^2} + mx + 1 = {\left( {\sqrt {{x^2} + 1} } \right)^3} + \sqrt {{x^2} + 1} \Leftrightarrow f\left( {mx + 1} \right) = f\left( {\sqrt {{x^2} + 1} } \right)\)
\( \Leftrightarrow mx + 1 = \sqrt {{x^2} + 1} \Leftrightarrow mx = \sqrt {{x^2} + 1} - 1 \Leftrightarrow mx = \frac{{{x^2}}}{{\sqrt {{x^2} + 1} + 1}} \Rightarrow m = \frac{x}{{\sqrt {{x^2} + 1} + 1}}\)
\( \Rightarrow g'\left( x \right) = \frac{{\sqrt {{x^2} + 1} + 1 - x.\frac{x}{{\sqrt {{x^2} + 1} }}}}{{{{\left( {\sqrt {{x^2} + 1} + 1} \right)}^2}}} = \frac{{\sqrt {{x^2} + 1} + 1}}{{{{\left( {\sqrt {{x^2} + 1} + 1} \right)}^2}\sqrt {{x^2} + 1} }} >0,{\rm{ }}\forall x \in \left( {1;2} \right)\)
Từ đó \(g\left( 1 \right) \le m \le g\left( 2 \right) \Leftrightarrow \sqrt 2 - 1 \le m \le \frac{{\sqrt 5 - 1}}{2} \Rightarrow a = \sqrt 2 - 1;{\rm{ }}b = \frac{{\sqrt 5 - 1}}{2}\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247