Cho hình trụ (T) có chiều cao bằng 2. Một mặt phẳng (P) cắt hình trụ (T) theo thiết

Câu hỏi :

Cho hình trụ (T) có chiều cao bằng 2. Một mặt phẳng (P) cắt hình trụ (T) theo thiết diện là hình chữ nhật ABCD có các cạnh \[AB,{\rm{ }}CD\] lần lượt là các dây cung của hai đường tròn đáy. Biết cạnh \[AB = AD = 2\sqrt 5 ,\] tính thể tích của khối trụ đã cho.

A.\[20\pi .\]

B.\[16\pi .\]

C.\[22\pi .\]

D.\[18\pi .\]

* Đáp án

* Hướng dẫn giải

Chọn đáp án D

Kẻ đường cao AH, ta có \[\left\{ \begin{array}{l}CD \bot AH\\CD \bot AD\end{array} \right.\]

\[ \Rightarrow CD \bot \left( {ADH} \right) \Rightarrow CD \bot DH\] HClà đường kính của đường tròn đáy

\[ \Rightarrow HC = 2r\].

Ta có \[A{B^2} + A{D^2} = B{D^2} = A{C^2} = A{H^2} + H{C^2}\]

\[ \Rightarrow 20 + 20 = {2^2} + {\left( {2r} \right)^2} \Rightarrow r = 3\]

\[ \Rightarrow V = \pi {r^2}h = \pi {.3^2}.2 = 18\pi \].

 Cho hình trụ (T) có chiều cao bằng 2. Một mặt phẳng (P) cắt hình trụ (T) theo thiết (ảnh 1)

Copyright © 2021 HOCTAP247