Cho hai số thực a,b thỏa mãn a>b>4/3 và 16loga(a^3/(12b-16))

Câu hỏi :

Cho hai số thực \[a,{\rm{ }}b\] thỏa mãn \[a >b >\frac{4}{3}\] và \[16{\log _a}\left( {\frac{{{a^3}}}{{12b - 16}}} \right) + 3\log _{\frac{a}{b}}^2a\] đạt giá trị nhỏ nhất. Tính \[a + b.\]

A.\[\frac{7}{2}.\]

B.\[4.\]

C.\[\frac{{11}}{2}\]

D.\[6.\]

* Đáp án

* Hướng dẫn giải

Lời giải:

Chọn đáp án D

Ta có \({b^3} + 16 = {b^3} + 8 + 8 \ge 3\sqrt[3]{{64{b^3}}} = 12b \Rightarrow 12b - 16 \le {b^3}\)

\( \Rightarrow P = 16.3 - 16{\log _a}\left( {12b - 16} \right) + \frac{3}{{{{\left( {{{\log }_a}\frac{a}{b}} \right)}^2}}} \ge 48 - 16{\log _a}{b^3} + \frac{3}{{{{\left( {1 - {{\log }_a}b} \right)}^2}}}\)

\( \Rightarrow P \ge 48 - 48{\log _a}b + \frac{3}{{{{\left( {1 - {{\log }_a}b} \right)}^2}}} = 48\left( {1 - {{\log }_a}b} \right) + \frac{3}{{{{\left( {1 - {{\log }_a}b} \right)}^2}}}\)

Đặt \(t = 1 - {\log _a}b >0 \Rightarrow P \ge 48t + \frac{3}{{{t^2}}} = 24t + 24t + \frac{3}{{{t^2}}} \ge 3\sqrt[3]{{24t.24t.\frac{3}{{{t^2}}}}} = 36\).

Dấu xảy ra \( \Leftrightarrow \left\{ \begin{array}{l}b = 2\\24t = \frac{3}{{{t^2}}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 2\\t = \frac{1}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 2\\b = \sqrt a \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 2\\a = 4\end{array} \right. \Rightarrow a + b = 6\).

Copyright © 2021 HOCTAP247