A.4.
B.14.
C.\[\sqrt {176} .\]
D.\[\sqrt {106} .\]
Lời giải:
Chọn đáp án D
Giả sử \(z = x + yi{\rm{ }}\left( {x,y \in \mathbb{R}} \right)\)
Từ \(z + w = 3 + 4i \Rightarrow w = \left( {3 - x} \right) + \left( {4 - y} \right)i\).
Ta có \(z - w = \left( {2x - 3} \right) + \left( {2y - 4} \right)i \Rightarrow \left| {z - w} \right| = \sqrt {{{\left( {2x - 3} \right)}^2} + {{\left( {2y - 4} \right)}^2}} = 9\)
\( \Rightarrow 4{x^2} + 4{y^2} - 12x - 16y - 56 = 0 \Rightarrow 2{x^2} + 2{y^2} - 6x - 8y - 28 = 0{\rm{ }}\left( 1 \right)\)
Ta có \(T = \left| z \right| + \left| w \right| = \sqrt {{x^2} + {y^2}} + \sqrt {{{\left( {3 - x} \right)}^2} + {{\left( {4 - y} \right)}^2}} \).
Áp dụng bất đẳng thức Bunyakovsky ta có \({T^2} \le 2\left[ {\left( {{x^2} + {y^2}} \right) + {{\left( {3 - x} \right)}^2} + {{\left( {4 - y} \right)}^2}} \right]\)
\( \Rightarrow {T^2} \le 2\left( {2{x^2} + 2{y^2} - 6x - 8y + 25} \right) = 2\left( {28 + 25} \right) \Rightarrow T \le \sqrt {106} \).
Dấu “=” xảy ra \( \Leftrightarrow {x^2} + {y^2} = {\left( {3 - x} \right)^2} + {\left( {4 - y} \right)^2} \Leftrightarrow 25 - 6x - 8y = 0 \Leftrightarrow y = \frac{{25 - 6x}}{8}\).
Thế vào (1) ta được \({x^2} + {\left( {\frac{{25 - 6x}}{8}} \right)^2} - 3x - 4.\frac{{25 - 6x}}{8} - 14 = 0\)
\( \Leftrightarrow 64{x^2} + \left( {36{x^2} - 300x + {{25}^2}} \right) - 192x - 32\left( {25 - 6x} \right) - 896 = 0\)
\( \Leftrightarrow 100{x^2} - 300x - 1071 = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{51}}{{10}} \Rightarrow y = - \frac{7}{{10}}\\x = - \frac{{21}}{{10}} \Rightarrow y = \frac{{47}}{{10}}\end{array} \right.\)
Vậy \({T_{\max }} = \sqrt {106} \) đạt được chẳng hạn khi \(z = \frac{{51}}{{10}} - \frac{7}{{10}}i,{\rm{ }}w = - \frac{{21}}{{10}} + \frac{{47}}{{10}}i\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247