Cho hàm số f(x) xác định và có đạo hàm f'(x) liên tục trên ,

Câu hỏi :

A. S=0

A. S=0

B. S=2

C. S=1

D. S=4

* Đáp án

* Hướng dẫn giải

Với x1;  3 ta có: f'x1+fx2=fx2x12f'x1+fx2fx4=x12.
   1fx4+2fx3+1fx2f'x=x22x+1
Suy ra: 13fx31fx21fx=x33x2+x+C (lấy nguyên hàm hai vế).
Ta lại có: f1=1131+1=131+1+CC=0.
Dẫn đến: 131fx31fx21fx=13x3x2x    *.
Vì hàm số gt=13t3t2t nghịch biến trên R nên *1fx=xfx=1x.
Hàm số này thỏa các giả thiết của bài toán.
Do đó 13fxdx=131xdx=ln3a=1,  b=0. Vậy S=a+b2=1.
Chọn đáp án C

Copyright © 2021 HOCTAP247