Cho các số thực a,b,c thỏa mãn a2+b2+c2−2a−4b=4. Tính P=a+2b+3c khi biểu thức 2a+b−2c+7 đạt giá trị lớn nhất.

Câu hỏi :

 Cho các số thực a,b,c thỏa mãn a2+b2+c22a4b=4. Tính P=a+2b+3c khi biểu thức 2a+b2c+7 đạt giá trị lớn nhất.

A. P=7

B. P=3

C. P=3

D. P=7

* Đáp án

B

* Hướng dẫn giải

Chọn B

Cách 1: phương pháp đại số.

Ta có: a2+b2+c22a4b=4a12+b22+c2=9.

Áp dụng bất đẳng thức giá trị tuyệt đối và bất đẳng thức BCS, ta có kết quả sau:

2a+b2c+7=2a1+b22c+112a1+b22c+11BCSa12+b22+c222+12+22+11=20.

Đẳng thức xảy ra khi: 2a1+b22c>0a12=b21=c2a12+b22+c2=9a=3b=3c=2

Khi đó: P=a+2b+3c=3+2.3+3.2=3.

Cách 2: phương pháp hình học.

Trong không gian Oxyz, gọi mặt cầu S có tâm I1;2;0, bán kính R=3. Khi đó:

S:x12+y22+z2=9x2+y2+z22x4y=4.

và mặt phẳng P:2x+y2z+7=0.

Gọi Ma;b;c, ta có:dM;P=2a+b2c+73.

a2+b2+c22a4b=4MS.

Bài toán đã cho trở thành: Tìm MS sao cho dM;P lớn nhất.

Gọi Δ là đường thẳng qua I và vuông góc PΔ:x=1+2ty=2+tz=2t.

Điểm M cần tìm chính là 1 trong 2 giao điểm của Δ với S:M13;3;2,M21;1;2.

Ta có: dM1;P=203>dM2;P=23MaxdM;P=203MM1.

Vậy P=a+2b+3c=3+2.3+3.2=3.

Copyright © 2021 HOCTAP247