Cho các số thực x, y thỏa mãn 5+16.4x2−2y=(5+16x2−2y).72y−x2+2. Gọi M, m lần lượt là giá trị lớn nhất và nhỏ nhất của biểu thức P=10x+6y+262x+2y+5. Khi đó T=M+m bằng:

Câu hỏi :

Cho các số thực x, y thỏa mãn 5+16.4x22y=(5+16x22y).72yx2+2. Gọi M, m lần lượt là giá trị lớn nhất và nhỏ nhất của biểu thức P=10x+6y+262x+2y+5. Khi đó T=M+m bằng:

A. T=10

B. T=212

C. T=192

D. T=15

* Đáp án

C

* Hướng dẫn giải

Đáp án C

x22y=t5+16.4t=(5+16t).72t5+4t+27t+2=5+42t72t

t+2=2tt=2x22y=22y=x22

Khi đó P=3x2+10x+20x2+2x+3(3P)x2+2(5P)x+203P=0.

Phương trình bậc hai ẩn x, x tồn tại khi Δ02P219P+35052P7.

Vậy M+m=9,5.

Copyright © 2021 HOCTAP247