Gọi S là tập hợp tất cả các số tự nhiên có 6 chữ số đôi một khác nhau được lập từ tập hợp . Chọn ngẫu nhiên một số từ S.

Câu hỏi :

Gọi S là tập hợp tất cả các số tự nhiên có 6 chữ số đôi một khác nhau được lập từ tập hợp X=1;2;3;4;5;6;7;8;9 . Chọn ngẫu nhiên một số từ S. Xác suất để chọn ra được một số có các chữ số 1, 2, 8, 9 trong đó các chữ số 1, 2 không đứng cạnh nhau và các chữ số 8, 9 không đứng cạnh nhau bằng:

A. 3142.

B. 95126.

C. 2528.

D. 1318.

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Số cách lập dãy số có 6 chữ số khác nhau là nΩ=A96=60480 (số).

Gọi A là biến cố “lập được dãy số có sáu chữ số khác nhau mà các chữ số 1, 2 không đứng cạnh nhau và các chữ số 8, 9 không đứng cạnh nhau”.

+ Số cách lập dãy số có sáu chữ số khác nhau mà các chữ số 1, 2 đứng cạnh nhau và các chữ số 8, 9 đứng cạnh nhau là: nB=2!.2!.C52.4!=960.

+ Số cách lập dãy số có sáu chữ số khác nhau mà các chữ số 1, 2 đứng cạnh nhau lànC=2!.C74.5!=8400.

+ Số cách lập dãy số có sáu chữ số khác nhau mà các chữ số 8, 9 đứng cạnh nhau là nD=2!.C74.5!=8400.

+ Số cách lập dãy số có sáu chữ số khác nhau mà các chữ số 1, 2 không đứng cạnh nhau và các chữ số 8, 9 không đứng cạnh nhau là: nA=nΩnC+nDnB=44640.

Vậy xác suất để chọn được một số có sáu chữ số khác nhau mà các chữ số 1, 2 không đứng cạnh nhau và các chữ số 8, 9 không đứng cạnh nhau là: P=nAnΩ=4464060480=3142.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2021 !!

Số câu hỏi: 200

Copyright © 2021 HOCTAP247