Giả sử m là số thực sao cho phương trình log32x -( m+2)log3x+m-2có hai nghiệm

Câu hỏi :

Giả sử m là số thực sao cho phương trình log32xm+2log3x+3m2=0  có hai nghiệm x1,x2  thỏa mãn x1.x2=9 . Khi đó m thuộc khoảng nào dưới đây?

A. m1;1.

B. m4;6.

C. m3;4.

D. m1;3.

* Đáp án

A

* Hướng dẫn giải

: Đáp án A

Ta có: log32xm+2log3x+3m2=0*.

Đặt log3x=t*t2m+2t+3m2=0   1.

Vì (*) có 2 nghiệm x1,x2 thỏa mãn x1.x2=91 có 2 nghiệm t1,t2 thỏa mãn 3t1.3t2=9t1+t2=2.

Theo Vi-ét ta có: t1+t2=m+2m=01;1.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2021 !!

Số câu hỏi: 200

Copyright © 2021 HOCTAP247