Cho các hàm số f(x)g, (x) liên tục trên đoạn [0;1] thỏa mãn

Câu hỏi :

Cho các hàm số fx,gx  liên tục trên đoạn 0;1  thỏa mãn m.fx+n.f1x=gx  với m, n là các số thực khác 0 và . Giá trị của 01fxdx=01gxdx=1  là:

A. m+n=0.

B. m+n=12.

C. m+n=1.

D. m+n=2.

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Từ giả thiết m.fx+n.f1x=gx, lấy tích phân hai vế ta được:

01m.fx+n.f1xdx=01gxdx01m.fxdx+01n.f1xdx=01gxdx.

Suy ra m+n01f1xdx=1 (do 01fxdx=01gxdx=1) (1)

Xét tích phân 01f1xdx.

Đặt t=1x, suy ra dt=dx.

Đổi cận x=0t=1x=1t=0.

Khi đó 01f1xdx=10ftdt=01ftdt=01fxdx=1   2.      

Từ (1) và (2), suy ra m+n=1.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2021 !!

Số câu hỏi: 200

Copyright © 2021 HOCTAP247