Biết rằng số phức w=-8 + 6i có một căn bậc hai dạng a+bi với

Câu hỏi :

Biết rằng số phức \[w = - 8 + 6i\] có một căn bậc hai dạng \[a + bi,\] với \[a,{\rm{ }}b \in \mathbb{R}\] và \[a >0.\] Tính \[S = a + b.\]

A.\[S = - 2.\]

B.\[S = 4.\]

C.\[S = - 1.\]

D.\[S = 5.\]

* Đáp án

* Hướng dẫn giải

Lời giải:

Chọn đáp án B

Xét \({\left( {a + bi} \right)^2} = w \Leftrightarrow {a^2} - {b^2} + 2abi = - 8 + 6i \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{a^2} - {b^2} = - 8}\\{2ab = 6}\end{array}} \right.\)

\( \Rightarrow {a^2} - {\left( {\frac{3}{a}} \right)^2} = - 8 \Rightarrow {a^4} + 8{a^2} - 9 = 0 \Rightarrow {a^2} = 1 \Rightarrow a = 1\) thỏa mãn

\( \Rightarrow b = 3 \Rightarrow S = 4.\)

Copyright © 2021 HOCTAP247