Cho hàm số f(x)= 2^x/(2^x+2) . Tính tổng f(0)+f(1/10)+....

Câu hỏi :

Cho hàm số \[f\left( x \right) = \frac{{{2^x}}}{{{2^x} + 2}}\]. Tính tổng \[f\left( 0 \right) + f\left( {\frac{1}{{10}}} \right) + ... + f\left( {\frac{{19}}{{10}}} \right)\].

A.\[\frac{{59}}{6}\].

B.10.

C.\[\frac{{19}}{2}\].

D.\[\frac{{28}}{3}\].

* Đáp án

* Hướng dẫn giải

Lời giải:

Chọn đáp án A

Với \(a + b = 2\), ta có \(f\left( a \right) + f\left( b \right) = \frac{{{2^a}}}{{{2^a} + 2}} + \frac{{{2^b}}}{{{2^b} + 2}}\)

\( = \frac{{{2^a}{{.2}^b} + {{2.2}^a} + {2^a}{{.2}^b} + {{2.2}^b}}}{{\left( {{2^a} + 2} \right)\left( {{2^b} + 2} \right)}} = \frac{{{2^{a + b}} + {{2.2}^a} + {2^{a + b}} + {{2.2}^b}}}{{{2^{a + b}} + {{2.2}^a} + {{2.2}^b} + 4}}\)

\( = \frac{{4 + {{2.2}^a} + 4 + {{2.2}^b}}}{{4 + {{2.2}^a} + {{2.2}^b} + 4}} = 1\).

Do đó với \(a + b = 2\)thì \(f\left( a \right) + f\left( b \right) = 1\).

Áp dụng ta được \(f\left( 0 \right) + f\left( {\frac{1}{{10}}} \right) + ... + f\left( {\frac{{19}}{{10}}} \right)\)

\[ = f\left( 0 \right) + \left[ {f\left( {\frac{1}{{10}}} \right) + f\left( {\frac{{19}}{{10}}} \right)} \right] + \left[ {f\left( {\frac{2}{{10}}} \right) + f\left( {\frac{{18}}{{10}}} \right)} \right] + ... + \left[ {f\left( {\frac{9}{{10}}} \right) + f\left( {\frac{{11}}{{10}}} \right)} \right] + f\left( 1 \right)\]

\( = \frac{1}{3} + 9.1 + \frac{2}{4} = \frac{{59}}{6}\).

Copyright © 2021 HOCTAP247