Cho lăng trụ đứng ABCD.A'B'C'D' có đáy ABCDlà hình chữ nhật với

Câu hỏi :

Cho lăng trụ đứng \[ABCD.A'B'C'D'\] có đáy ABCDlà hình chữ nhật với \[AB = 2a,{\rm{ }}AC = 2a\sqrt 3 .\] Góc giữa đường thẳng \[AC'\] và mặt phẳng \[\left( {ABCD} \right)\] bằng \[30^\circ .\] Thể tích của khối lăng trụ \[ABCD.A'B'C'D'\] bằng

A.\[\frac{{16{a^3}}}{3}.\]

B.\[\frac{{8{a^3}\sqrt 2 }}{3}.\]

C.\[8{a^3}\sqrt 2 .\]

D.\[6{a^3}\sqrt 3 .\]

* Đáp án

* Hướng dẫn giải

Lời giải:

Chọn đáp án C

Ta có \(\widehat {\left( {AC';(ACBC{\rm{D}})} \right)} = \widehat {C'AC} = 30^\circ \)

\( \Rightarrow \tan 30^\circ = \frac{{CC'}}{{AC}} = \frac{1}{{\sqrt 3 }} \Rightarrow CC' = \frac{{AC}}{{\sqrt 3 }} = 2{\rm{a}}\).

Cạnh \(BC = \sqrt {A{C^2} - A{B^2}} = 2{\rm{a}}\sqrt 2 \Rightarrow V = CC'.AB.BC = 8{{\rm{a}}^3}\sqrt 2 \).

 Cho lăng trụ đứng ABCD.A'B'C'D' có đáy ABCDlà hình chữ nhật với (ảnh 1)

Copyright © 2021 HOCTAP247