Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt p

Câu hỏi :

Cho hình chóp S.ABCDcó đáy ABCDlà hình vuông cạnh \[a,{\rm{ }}SA\] vuông góc với mặt phẳng \[\left( {ABCD} \right)\]. Góc giữa đường thẳng SC và mặt phẳng \[\left( {ABCD} \right)\] bằng \[45^\circ \]. Khoảng cách giữa hai đường thẳng \[SB\] và \[AC\] bằng

A.\[\frac{{a\sqrt {10} }}{4}\]

B.\[\frac{{a\sqrt {10} }}{5}\]

C.\[\frac{a}{4}\]

D.\[\frac{a}{5}\]

* Đáp án

* Hướng dẫn giải

Lời giải:

Chọn đáp án B

 Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt p (ảnh 1)

Từ

\({\rm{AC // BE}} \Rightarrow {\rm{AC // }}\left( {SBE} \right)\)

\( \Rightarrow \left( {AC;SB} \right) = d\left( {AC;(SBE)} \right) = d\left( {A;(SBE)} \right) = d\)

Tứ diện vuông \(S.ABE \Rightarrow \frac{1}{{{d^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}} + \frac{1}{{A{{\rm{E}}^2}}}\)

\(\widehat {\left( {SC;(ABC{\rm{D}})} \right)} = \widehat {SCA} = 45^\circ \Rightarrow SA = AC = a\sqrt 2 \)

\(A{\rm{E}} = BC = a \Rightarrow d = a\sqrt {\frac{2}{5}} \).

Copyright © 2021 HOCTAP247