Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-6;12]

Câu hỏi :

Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \[\left[ { - 6;12} \right]\] để trên đồ thị hàm số \[y = {x^3} - 3m{x^2} + 3\left( {{m^2} - 1} \right)x + 1 - {m^2}\] có hai điểm phân biệt đối xứng nhau qua gốc tọa độ?

A.10.

B.5.

C.11.

D.6.

* Đáp án

* Hướng dẫn giải

Lời giải:

Chọn đáp án D

Gọi \(A\left( {{x_0};{y_0}} \right),{\rm{ B}}\left( { - {x_0}; - {y_0}} \right)\) là hai điểm phân biệt trên đồ thị đối xứng nhau qua gốc tọa độ. Khi nó

\({y_0} = x_0^3 - 3m{\rm{x}}_0^2 + 3\left( {{m^2} - 1} \right){x_0} + 1 - {m^2}\).

\( - {y_0} = {\left( { - {x_0}} \right)^3} - 3m{\left( { - {x_0}} \right)^2} + 3\left( {{m^2} - 1} \right)\left( { - {x_0}} \right) + 1 - {m^2}\)

\( = - x_0^3 - 3mx_0^2 - 3\left( {{m^2} - 1} \right){x_0} + 1 - {m^2}\)

\( \Rightarrow - 6m{\rm{x}}_0^2 + 2 - 2{m^2} = 0 \Leftrightarrow 3mx_0^2 = 1 - {m^2}\)(1)

Trên đồ thị có 2 điểm phân biệt A, Bđối xứng nhau qua gốc tọa độ \( \Leftrightarrow \) (1) có hai nghiệm phân biệt.

\( \Leftrightarrow 3m\left( {1 - {m^2}} \right) >0 \Leftrightarrow \left[ \begin{array}{l}0 < m < 1\\m < - 1\end{array} \right. \Rightarrow m \in \left\{ { - 6; - 5; - 4; - 3; - 2} \right\}\).

Copyright © 2021 HOCTAP247