Cho hàm số y=f(x) có đạo hàm liên tục trên R và đồ thị hàm số y=f'(x) như hình vẽ.

Câu hỏi :

Cho hàm số \[y = f\left( x \right)\] có đạo hàm liên tục trên \[\mathbb{R}\] và đồ thị hàm số \[y = f'\left( x \right)\] như hình vẽ. Bất phương trình \[f\left( x \right) < - {e^x} - 4x + m\] nghiệm đúng với mọi \[x \in \left( {0;2} \right)\] khi và chỉ khi

A. \[m \ge f\left( 0 \right) + 1.\]

B.\[m \ge f\left( 2 \right) + {e^2} + 8.\]

C.\[m >f\left( 0 \right) + 1.\]

D.\[m >f\left( 2 \right) + {e^2} + 8.\]

* Đáp án

* Hướng dẫn giải

Lời giải:

Chọn đáp án B

Xét hàm số \(g\left( x \right) = f\left( x \right) + {e^x} + 4{\rm{x}},{\rm{ x}} \in \left( {0;2} \right) \Rightarrow g'\left( x \right) = f'\left( x \right) + {e^x} + 4\).

Từ hình vẽ, ta thấy với mọi \(x \in \left( {0;2} \right)\) thì \( - 4 < f'\left( x \right) < 0 \Rightarrow f'\left( x \right) + 4 >0\)</>

\( \Rightarrow g'\left( x \right) >0,\forall x \in \left( {0;2} \right) \Rightarrow g\left( x \right)\) đồng biến trên \(\left( {0;2} \right) \Rightarrow g\left( x \right) < g\left( 2 \right) = f\left( 2 \right) + {e^2} + 8\)

Khi đó \(m >g\left( x \right),\forall x \in \left( {0;2} \right) \Leftrightarrow m \ge f\left( 2 \right) + {e^2} + 8\).

Copyright © 2021 HOCTAP247