Cho phương trình logaaxlogbbx=2020 với a, b là các tham số thực lớn hơn 1. Gọi x1, x2 là các nghiệm của phương trình đã cho. Khi biểu thức P=6x1x2+a+b+314a+4b đạt...

Câu hỏi :

Cho phương trình logaaxlogbbx=2020 với a,  b là các tham số thực lớn hơn 1. Gọi x1,  x2 là các nghiệm của phương trình đã cho. Khi biểu thức P=6x1x2+a+b+314a+4b đạt giá trị nhỏ nhất thì a+b thuộc khoảng nào dưới đây?

A. 6;7

B. 1;2

C. 2;3

D. 5;7

* Đáp án

D

* Hướng dẫn giải

Chọn D

Ta có logaaxlogbbx=2020

1+logax1+logbx=20201+logax1+logbalogax=2020

Đặt m=logbat=logax(Do a,b>1m>0).

Suy ra: 1+t1+mt=2020mt2+m+1t2019=0​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​            *

Xét Δ=m+12+4.2019.m  >0m>0.

Vậy phương trình * luôn có 2 nghiệm phân biệt t1,t2.

Theo Vi-et ta có: t1+t2=m+1mlogax1+logax2=logba+1logba

logax1x2=1+logab=logaabx1x2=1ab

Do đó P=6x1x2+a+b+314a+4b

P=6ab+a+b+314a+4b

P=6ab+23a+14b+13a+34a+3b4+12b

Áp dụng bất đẳng thức Cauchy cho các bộ số ta được: P3+1+6=10.

Dấu “=” xảy ra khi và chỉ khi a=32;b=4. Vậy a+b=112.

Copyright © 2021 HOCTAP247