Cho hàm số y=f(x) có đạo hàm tại mọi x thuộc R , hàm số

Câu hỏi :

A. 7

A. 7

B. 11

C. 9

D. 8

* Đáp án

* Hướng dẫn giải

Quan sát đồ thị, nhận thấy đồ thị hàm số f'(x)=x3+ax2+bx+c đi qua các điểm O0;0;A1;0;B1;0. Khi đó ta có hệ phương trình:
c=0a+b=1ab=1a=0b=1c=0f'x=x3xf''x=3x21.
Đặt: gx=ff'x
Ta có: g'x=ff'x'=f'f'x.f''x=x3x3x3x3x21
=xx1x+1x3x1x3x+13x21
g'x=0x=0x=1x=1x3x1=0x3x+1=03x21=0x=0x=1x=1x=a(0,76)x=bb1,32x=±13
Ta có bảng biến thiên:
Cho hàm số y=f(x) có đạo hàm tại mọi x thuộc R , hàm số   (ảnh 2)
* Cách xét dấu g'x: chọn x=21;+ ta có: g'2>0g'x>0x1;+, từ đó suy ra dấu của g'x trên các khoảng còn lại.
Dựa vào BBT suy ra hàm số có 7 điểm cực trị.
* Trắc nghiệm: Số điểm cực trị bằng số nghiệm đơn ( nghiệm bội lẻ) của phương trình đa thức g'x=0 . PT g'x=0 có 7 nghiệm phân biệt nên hàm số đã cho có 7 điểm cực trị.
Chọn đáp án A

Copyright © 2021 HOCTAP247