Cho hàm số f(x) liên tục trên R và có đồ thị (C) như hình vẽ. Diện tích S của

Câu hỏi :

Cho hàm số f(x) liên tục trên \[\mathbb{R}\] và có đồ thị (C) như hình vẽ. Diện tích S của hình phẳng giới hạn bởi các đường \[y = f\left( x \right),{\rm{ }}y = 0,{\rm{ }}x = - 1,{\rm{ }}x = 2\] được tính theo công thức?

A.\[S = \int\limits_{ - 1}^2 {f\left( x \right)dx} .\]

B.\[S = \int\limits_{ - 1}^0 {f\left( x \right)dx} - \int\limits_0^2 {f\left( x \right)dx} .\]

C.\[S = - \int\limits_{ - 1}^2 {f\left( x \right)dx} .\]

D.\[S = - \int\limits_{ - 1}^0 {f\left( x \right)dx} + \int\limits_0^2 {f\left( x \right)dx} .\]

* Đáp án

* Hướng dẫn giải

Chọn đáp án C

Ta có \(S = \int\limits_{ - 1}^2 {\left| {f\left( x \right)} \right|d{\rm{x}}} = - \int\limits_1^2 {f\left( x \right)d{\rm{x}}} \).

Copyright © 2021 HOCTAP247